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We propose a mechanism for the generation of ultrashort (sub-ps to a few

ps) relativistic electron bunches having a ramp-shaped current profile that rises

gradually from the head to the tail, followed by a sharp cutoff. This type of

current distribution approximates the idealized profile predicted by linear 1D and

nonlinear 2D calculations to be optimal for driving large-amplitude wakefields in

a plasma wakefield accelerator (PWFA). The proposed scheme utilizes a dogleg

beamline (or dispersionless translating section) as a bunch compressor to impart

a linear negative longitudinal dispersion transformation on the longitudinal phase

space of a beam that is initially chirped in energy versus longitudinal position

within the bunch. A theory to describe this mechanism is derived using first

and second-order transport matrix theory. The theoretical results, combined

with simulations using the particle transport codes ELEGANT and PARMELA,

indicate that sextupole corrector magnets are required in order to cancel out

nonlinear chromatic effects which tend to otherwise disrupt the ramped shape of

the current distribution.

To provide a venue for a proof-of-principle experiment to test these predic-
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tions, a dogleg beamline was designed and built at the UCLA Neptune accelerator

laboratory. A standing wave deflecting cavity was designed and built as a tem-

poral diagnostic for measuring the current profiles of the electron bunches after

passing through the dogleg. Second-order horizontal dispersion measurements

and coherent transition radiation bunch length measurements of the electron

beam after passing through the dogleg show good agreement with the predic-

tions of theory and simulation.

Deflecting cavity measurements were conducted to directly measure the cur-

rent profiles of both compressed and uncompressed electron bunches, with and

without sextupole correction. The uncompressed bunch is found to have an asym-

metrical (non-Gaussian) shape, presumably inherited from the pulse shape of the

photoinjector drive laser. Results for an initially chirped beam show that ramp-

shaped bunches can be produced by the proposed method, although due to the

asymmetric initial (i.e. pre-compression) current profile of the electron bunches

produced by the Neptune photoinjector, it is found to be necessary to overcom-

pensate with the sextupole magnets in order to achieve a ramp-shaped profile.
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CHAPTER 1

Introduction

The final distribution of particles within an electron bunch produced by a radio-

frequency (RF) photoinjector (or laser-driven electron gun) is the end result of a

dynamic evolution under the influence of various forces. The bunch density dis-

tribution along the longitudinal axis of the bunch is initially determined by the

time structure of the laser pulse that produces the electrons via photoemission

at the cathode, as well as by the emission properties of the metal from which the

cathode is constructed. The longitudinal bunch distribution is sometimes alter-

natively referred to as the ”time-current profile,” since the density distribution

is proportional to the beam current passing a stationary point as a function of

time. The current profile of the bunch evolves as it passes across the acceler-

ating voltage of the photoinjector cavity due to the influence of various forces,

including: (1) the electromagnetic self-forces within the beam (generally referred

to as ’space charge’ forces), (2) the externally imposed longitudinal accelerating

field of the cavity, (3) the force due to the image charge of the beam in the con-

ducting plane of the cathode, and (4) the interaction between the beam and the

cavity itself due to the effective impedance of the structure (a process known as

”beam loading”) and can result in the production of wake-fields at the irises of

the structure, which in turn affect the longitudinal dynamics of the beam.

These various forces collectively limit the achievable peak beam current and

longitudinal bunch shape. In experiments that require either a higher peak beam
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current or a different shape of current profile than what the current photoin-

jector design produces, one or more longitudinal bunch shaping techniques may

be employed. In the present chapter, we discuss several areas of current active

research for which relativistic electron bunches of high current and brightness are

important (inverse Compton scattering, the free electron laser, and the plasma

wakefield accelerator), and review various techniques for manipulating the longi-

tudinal distribution of the beam (velocity bunching, the magnetic chicane, and

the dogleg compressor). All of these three techniques have been employed at the

UCLA Neptune laboratory in recent years.

The dogleg compressor, in particular, is the technology which underlies the

primary experimental work presented in this dissertation. In order to motivate

this work, we conclude the chapter with an overview of the technique’s most

prominent potential application: the generation of an optimized drive beam for

the plasma wake-field accelerator (PWFA).

1.1 Definitions of Relevant Beam Parameters

The 6D phase space particle density of a bunched electron beam at some time t

may be represented by a distribution function f(r,p, t), where r and p are vectors

in position and momentum space respectively. The charge density ρ of the bunch

may be obtained by integrating this function over momenta and multiplying by

the total charge Q:

ρ(r, t) = Q

∫
f(r,p, t)d3p (1.1)

Since the distribution function itself is not experimentally measurable, it is com-

mon to characterize the beam in terms of various moments of the distribution.

For example, the trajectory and momentum of the so-called beam centroid are
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given by the first moments:

〈r(t)〉 =

∫
r f(r,p, t) d3r d3p (1.2)

〈p(t)〉 =

∫
p f(r,p, t) d3r d3p (1.3)

The averaged values 〈r〉 and 〈p〉 preferably coincide with the design trajectory

and the design momentum of the beam, meaning the intended trajectory and

momentum of the beam. An arbitrary position or momentum may be expressed

relative to that of the beam centroid via

r = 〈r〉+ δr (1.4)

p = 〈p〉+ δp (1.5)

where δr = (x, y, z) and δp = (δpx, δpy, δpz) are the deviations in position and

momentum relative to the centroid, and we have suppressed the explicit time

dependence. The distribution function may now be parameterized in terms of

the new coordinates, f(r,p) → F (δr, δp), and second moments may be taken:

〈µ2〉 =

∫
µ2 F (δr, δp) d3δr d3δp. (1.6)

Here µ stands for any one of the coordinates (x, y, z, δpx, δpy, δpz) relative to the

centroid. From these second moments we can define the root mean square (RMS)

quantities

σµ =
√
〈µ2〉 (1.7)

as well as the transverse and longitudinal normalized emittances:

εx,N =
1

mc

√
〈δp2

x〉〈x2〉 − 〈δpxx〉2, (1.8)

εy,N =
1

mc

√
〈δp2

y〉〈y2〉 − 〈δpyy〉2, (1.9)
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εz,N =
1

mc

√
〈δp2

z〉〈z2〉 − 〈δpzz〉2. (1.10)

Note that the normalized emittances have the dimensions of area in each of the

three phase planes. Under the influence of a time-independent Hamiltonian and

in the absence of coupling between the phase planes they are constants of the

motion by virtue of Liouville’s Theorem. Their relationships to the unnormal-

ized (or RMS) emittances and to the Courant-Snyder invariants are discussed in

Chapter 3. Normalized transverse emittance is a general figure of merit for elec-

tron bunches, as the area occupied by the beam distribution in each transverse

phase plane limits how tightly the beam can be focused in that dimension. The

transverse emittances are related to the transverse beam brightness, defined by

B =
2I

εx,Nεy,N
, (1.11)

where I = Qv0/σz is the beam current with v0 being the bunch velocity. Bright-

ness, a measure of phase space density, is a general figure of merit for electron

beams. However, the expression given in Eq. (1.11) poses difficulties in certain

circumstances. For example, it contains no information about the longitudinal

distribution of the beam. Consequently, various alternative definitions have been

formulated for different applications, producing some ambiguity about the mean-

ing of the word brightness. These alternative definitions may, however, introduce

additional difficulties in some cases. Averaging over the full 4D distribution in

the combined x and y phase space, for example, produces an infinite result for a

Kapchinskij-Vladmirskij distribution [1]. The expression presented in Eq. (1.11)

is the one most commonly employed.
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1.2 Longitudinal Photoinjector Dynamics

The modern electron photoinjector is essentially a multi-cell RF cavity (or iris-

loaded waveguide) where the first cell is really a half-cell (or partial-cell) bounded

on the upstream side by a conducting plane which serves as a photocathode. The

half-cell also serves to give a shorter path for the (initially) nonrelativistic elec-

trons to stay in resonance with the accelerating RF wave. The photocathode is

constructed, in whole or in part, out of a metal with a work function near the

single-photon energy of the drive laser used to excite the photoemission. The

transverse geometry of the cavity is designed in such a way that the electro-

magnetic field in each cell resembles the TM010 mode of a cylindrical pillbox,

which has a longitudinal component of electric field along the axis of the struc-

ture. If N is the number of cells, then for a given electromagnetic mode of the

single-cell geometry there are N coupled modes in the passband of the multi-

cell structure. The operating mode is typically identified by the value of the

phase shift of the electromagnetic wave between adjacent cells. This cell-to-cell

phase shift corresponds with one of the allowed Flouquet phase shifts given by

φn = π(n− 1)/(N − 1) where n is an integer from 1 to N . A cartoon drawing of

a 1.5 cell photoinjector is shown in Fig. 1.1. Most photoinjectors are operated

in the so-called π mode corresponding to n = N . Consequently, the fields in

adjacent cells are out of phase by 180 degrees. The length d of a full cell (i.e. the

distance from the center of one full cell to the center of the next) is then made

to be half of the wavelength of the RF source (d = λ/2). Since the cell-to-cell

transit time for a relativistic particle is thereby made equal to the time required

for the phase of the field in a given cell to change by 180 degrees, relativistic

electrons moving along the axis of a structure operating in the π mode can be

made to always experience a longitudinal force in the forward direction.
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Figure 1.1: Cartoon drawing of 1.5 cell photoinjector.

1.2.1 RF Effects and Longitudinal Phase Space

In describing the longitudinal effects due to the RF acceleration of an electron

beam in a photoinjector, we closely follow the theory presented by Kwang-Je

Kim [2], with minor typographical changes. The longitudinal force responsible

for accelerating the electrons in a photoinjector arises from the longitudinal com-

ponent of the electric field. For a π mode structure (see Fig. 1.1) we may write

the on-axis electric field in the form

Ez = E0 cos ks sin(ωt+ φ0). (1.12)

where s is longitudinal distance from the cathode, ω is the RF frequency, and φ0

is the injection phase.

The electrons are not relativistic at the moment they are emitted from the

cathode, as they have not yet experienced any acceleration. The phase of the

electric field seen by a given electron changes during the acceleration process,

making it necessary to carefully phase the RF in the structure relative to the

arrival time of the photocathode laser pulse. At a longitudinal distance s from
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the cathode, the phase of the electric field seen by an electron is given by

φ = φ0 + k

∫ s

0

(
γ(s̃)√
γ(s̃)2 − 1

− 1) ds̃, (1.13)

where φ0 is the injection phase of the electron and γ is its instantaneous energy

(normalized by mc2) at position s. The function γ(s) must satisfy the differential

equation for energy conservation which takes the form

dγ

ds
= αk[sinφ+ sin(φ+ 2ks)], (1.14)

where α = eE0/2mc
2k is the so-called acceleration factor, which may also be

regarded as a normalized vector potential, or as the fraction of rest energy an

electron may receive in one radian of the wave. Equations (1.13) and (1.14)

constitute a pair of coupled differential equations for γ and φ as functions of lon-

gitudinal position s. Kim derives the following approximate analytical solutions

[2]:

φ =
1

2α sinφ0

[
√
γ̃2 − 1− (γ̃ − 1)] + φ0, (1.15)

γ = γ0 + α[ks sinφ+
1

2
(cosφ− cos(φ+ 2ks))], (1.16)

where γ̃ = γ0 + 2α sin(φ0)ks is the lowest order approximation for γ and γ0 is

the initial energy of the electron. Since the governing equations are controlled

by two unitless parameters (the acceleration factor α and the injection phase φ0)

this treatment has fairly universal applicability. When considered as a function

of s the expression for the phase of the electron asymptotically approaches the

value φ∞ = φ0+ 1
2α sinφ0

. Requiring that this asymptote correspond with the crest

of the RF (and the maximum accelerating field) at φ∞ = π/2 produces a simple

transcendental equation for the optimal injection phase:

(π/2− φopt) sin(φopt) = 1/(2α). (1.17)
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For the photoinjector at the UCLA Neptune Laboratory, for example, the value

of the acceleration factor is α = 1.5, giving an optimal injection phase of 69.1◦,

or approximately 21◦ behind the crest of the RF. It should be noted that Kim’s

theory breaks down for small values of φ0 or α. The conditions for validity of the

theory may be stated as: α ≥ 0.9 and φ0 ≥ π/4 [3]. A slightly modified approach

valid at smaller values of injection phase has been proposed by Gao [4].

Equations (1.15) and (1.16) provide an approximate analytical description of

the effect of the acceleration process on the longitudinal phase space distribution

of the electron beam. The process of photoemission is not an instantaneous

event, owing to the fact that the drive laser pulse has some nonzero duration,

typically on the order of picoseconds. Consequently, electrons are emitted with

a distribution in initial phase. This is illustrated in Fig. 1.2, where we plot

the phase space distrubutions predicted by Eqs. 1.15 and 1.16 for the Neptune

parameters, with a spread in initial phase corresponding to a 10 ps square pulse.

In part (a) the central injection phase is 〈φ0〉 = φopt = 69.1◦ and in part (b) it is

chosen to be 〈φ0〉 = 55.3◦. In the case of part (a) the choice of injection phase

results in a final distrubution centered about the peak of the RF, while the choice

of part (b) results in a distrubtion with maximum energy and minimal energy

spread.

In practice, the injection phase is chosen to lie close to φopt as given by Eqn.

(1.17), as this choice has been found to minimize the RF contribution to the

transverse emittance [2]. With this choice of injection phase the emittances take

the following forms for the case of a Gaussian distribution:

εrfx,N =
αk3σ2

xσ
2
z√

2
; εrfz,N =

√
3(γf − 1)k2σ3

z (1.18)

The resulting longitudinal phase space of the beam upon exiting the photoinjector

has a chirp in energy, with higher energy particles at the head of the beam and
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Figure 1.2: Plots of longitudinal phase space.

lower energy particles at the tail, as seen in part (a) of Fig. 1.2. The chirp is not

linear but rather possesses a curvature imparted by the sinusoidal variation of

the electromagnetic accelerating force. This chirp may be reduced, enhanced, or

reversed in sign by appropriate phasing of the electron beam upon injection into

whatever standing-wave or travelling-wave structure is used for post-acceleration

of the particles following the initial acceleration in the photoinjector. There is

also a distribution in initial energy, called the intrinsic (or uncorrelated) energy

spread, due to the temperature of the cathode and the spectral width of the laser

pulse. The intrinsic energy spread corresponds with the vertical thickness of the

curves plotted in Fig. 1.2.

There is also a longitudinal compression produced by the variation in ac-

celeration of the bunch from head to tail. The compression factor is given by

differentiating the equation for the asymptotic phase with respect to φ0:

dφ∞
dφ0

= 1− cosφ0

2α sin2 φ0

(1.19)

For the Neptune parameters, this gives a compression factor of 0.86. It should be

noted that this represents the compression produced solely by RF effects. The

expansion of the beam at low energy under the influence of its internal space
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charge forces tends to counteract this compression.

1.2.2 Space Charge Effects

The electromagnetic self-forces of the electron beam are generally referred to as

space charge, a terminology borrowed from plasma physics. In principle, the

action of the internal space charge forces can be accounted for by considering

the self-consistent evolution of the beam’s distribution function f(r, t) under the

Vlasov equation, in the presence of the externally applied accelerating fields. In

practice, a direct analytical solution of this sort is not generally feasible. To

properly gauge the effects of space charge on the evolution of the beam inside

a photoinjector it is therefore often necessary to resort to one of a variety of

photoinjector modeling codes, such as PARMELA or HOMDYN. The qualitative

effects in longitudinal phase space include: an expansion of the bunch length

during the acceleration process (while the bunch is nonrelativistic and the space

charge forces are not yet diminished by the relativistic 1/γ2 dependence) and an

increase in intrinsic (uncorrelated) energy spread, resulting in an increase in the

longitudinal emittance.

An approximate analytical treatment of the emittance dilution due to space

charge is provided by Kim [2]. The beam is assumed to be cylindrically symmetric

with a transverse to longitudinal aspect ratio less than or equal to unity (ζ =

σx/σz ≤ 1). His analysis relies upon deriving the energy scaling of the field

components under a quasi-electrostatic assumption in the rest frame of the beam

and then separating out the 1/γ2 dependence of the space charge force Fsc to

obtain a geometrical form factor F that is a slowly varying function of γ. This

may be written

Fsc =
1

γ2
F(γ, δr) (1.20)
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where δr is the position of the particle relative to the bunch centroid. The

momentum kick imparted to a test particle in the bunch may then be written

δpsc =

∫
Fsc dt =

1

c

∫
1

γ2β
F(γ, δr) ds (1.21)

Due to the 1/γ2 scaling, the most significant part of the momentum kick is

delivered close to the cathode where the bunch is nonrelativistic. Consequently,

the function F may be evaluated at γ = 1, and the equation of motion Eq. (1.14)

may be evaluated at s = 0 and then used to replace the integration over ds by

one over dγ. This produces the result

δpsc =
mc F(1)

eE0 sinφ0

∫ γf

1

dγ

γ2β
(1.22)

For large values of γf the integral evaluates to π/2. Defining the normalized

field E(x, y, z) = (4πε0/eλ0) F(1, δr), where λ0 is the line charge density at the

bunch center, the space charge contributions to the emittances as obtained via

Eqs. (1.8)-(1.10) are given by

εsci,N =
πI

4αk sinφ0 IA
µi(ζ) ; i = x, z (1.23)

where ζ = σx/σz is the aspect ratio of the beam, I is the beam current, and

IA = 4πε0mc
3/e is the Alvén current. The quantities µi are dimensionless form

factors derived from the second moments of the distribution:

µx(ζ) =
√
〈E2
x〉〈x2〉 − 〈Exx〉2 (1.24)

µz(ζ) =
√
〈E2
z 〉〈z2〉 − 〈Ezz〉2 (1.25)

Kim obtains approximate analytical expressions for the case of a Gaussian:

µx(ζ) ≈
1

3ζ + 5
; µz(ζ) ≈

1.1

1 + 4.5ζ + 2.9ζ2
. (1.26)
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Due to the variation in space charge force along the bunch the resulting con-

tribution to the intrinsic energy spread for a Gaussian bunch as a function of

longitudinal position is given by:

∆σscγ (z) =
π

2

mc2

eE0σz sinφ0

I

IA
G(z/σz) (1.27)

where G is a complicated integral function, which is defined in Ref. [5]. The

longitudinal space-charge expansion of the beam has not been treated analytically

except in the case of a large aspect ratio beam (i.e. a pancake beam) [6, 7], in

which case the above theory fails. And since the emittance growth derived above

occurs primarily in the vecinity of the cathode, the values of σx and σz used can

be treated as the RMS dimensions of the drive laser pulse.

1.2.3 Combining the RF and Space Charge Contributions

Since the space-charge and RF contributions to the emittances are not truly

decoupled, it is not immediately clear how to combine them in order to obtain

the total emittance. It can be shown, however, that the total emittance lies

between the direct sum and the root-square sum of the two contributions [2]:√
(εthi,N)2 + (εrfi,N)2 + (εsci,N)2 < εi,N < εthi,N + εrfi,N + εsci,N (1.28)

Note that although it is generally small compared with the RF and space-charge

contributions, we have included for completeness the contribution from thermal

emittance at the cathode, which may be written

εthi,N =

√
kT

mc2
σi . (1.29)

Comparison of Eqs. (1.23) and (1.18) indicates that for constant bunch charge

the space charge contributions to the emittances scale linearly with peak beam

current and therefore inversely with the laser pulse length (if the aspect ratio is
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scaled accordingly), while the RF contributions scale quadratically or cubically

with pulse length for x and z respectively. Consequently, there exists an optimal

value for the laser pulse length at which the emittance in one phase plane or the

other is minimized (i.e. balanced between the two competing effects). In this

regard, the transverse emittance is usually of greater concern, and in practice

the optimal pulse length is determined experimentally or by use of photoinjector

modeling codes so as to minimize transverse emittance. For a good example of

this, see Ref. [8]. Generally the optimal pulse length is on the order of 10 de-

grees of RF phase. For an S-Band gun operating at 2.856 GHz, this corresponds

to 10 ps, which is the approximate (full-width) laser pulse length on the cath-

ode at the UCLA Neptune Laboratory. The transverse space charge emittance

can be reduced by using a solenoidal lens to remove linear correlations between

the transverse and longitudinal phase planes. This process, called space charge

compensation is discussed in the following section.

1.2.4 Space Charge Emittance Compensation

The space charge contribution to the transverse emittance growth in a photoin-

jector may be regarded as the result of a correlation in phase space which forms

between the radial and longitudinal coordinates due to the longitudinal varia-

tion of the space charge forces within the beam. When the correlated particle

distribution is projected onto the transverse phase plane, the result appears as a

growth in transverse emittance. As mentioned previously, when coupling occurs

between the phase planes the emittances are no longer invariant quantities. It

was proposed by Carlsten that a focusing lens may be used to remove the linear

correlation between x and z and thereby undo its contribution to the space charge

emittance which, for a space charge dominated beam, is the primary component
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of the overall emittance growth in the photoinjector [9]. Consequently, proper

employment of this technique can result in a significant improvement in overall

transverse emittance.

A simple model which illustrates the basic mechanisms involved is given by

Carlsten, who considers the evolution of the edge boundaries of a cylindrical

pillbox beam under linear space charge forces combined with a thin lens [9]. This

treatment ignores the RF contribution and the acceleration of the beam. The

transverse component of the space charge force, Eq. (1.20), is assumed to be linear

and invariant along the beam trajectory, taking the form Fx = me(x/R0)λ(z),

where me is the electron mass, R0 is the initial radius of the pillbox beam, and λ is

the normalized force. We have chosen x as our transverse variable for consistency

although due to the cylindrical symmetry we could alternatively have chosen y

or the polar coordinate r =
√
x2 + y2. The beam is postulated to be initially

located at longitudinal position s = −D, with its radial edge initially at R0. The

lens, positioned at s = 0, has focal length f . At position s downstream of the

lens, the radial edge boundary R(z, s) and its derivative R′ = dR/ds then have

the forms

R(z, s) = R0 +
1

2
λ(z)(D + s)2 − 1

f
[R0s+

1

2
D2λ(z)s] (1.30)

R′(z, s) = λ(D + s)− 1

f
(R0 +

1

2
λ(z)D2) (1.31)

The quantities R and R′ represent the edges of a distribution in the x− x′ phase

space, with each longitudinal slice of the beam corresponding to a line segment in

this phase space. The area of the distribution is nonzero when the slopes of these

lines are different for different longitudinal positions within the bunch. That is,

if the quantity R′/R is a function of z. Consequently, the distribution is reduced

to a single line in phase space (and therefore the linear space charge emittance
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is zero) if R′/R is made to be independent of z. This is found to occur at the

position s = s0 satisfying
1

f
=

2(D + s0)

s2
0

(1.32)

Substituting Eq. (1.32) back into (1.30), one finds that R = R′ = 0 when s0

has the critical value sc =
√
D2 + 2R0/λ. For s0 ≤ sc the analysis fails because

the beam edges cross paths and so the assumption that the space charge force is

constant cannot hold. For s0 > sc a beam waist occurs. The conclusion, then, is

that a focusing lens can be used to eliminate the linear space charge emittance,

and one expects this to occur immediately following a beam waist (i.e. focus).

While this treatment is very elementary, it helps illuminate the basic mech-

anism at work. Serafini and Rosenzweig have examined space charge emittance

compensation in a more rigorous theoretical framework using the transverse RMS

envelope equation, with an extended hard-edged solenoid field as the focusing el-

ement [10]. The envelope equation is a differential equation which governs the

evolution of the RMS transverse bunch size σx in the paraxial limit under the

influence of space-charge (κs), acceleration (γ′), emittance pressure, and external

focusing (K2
x):

σ′′x
σx

+
σ′x
σx

(
γ′

β2γ

)
+K2

x −
κs

σ2
xβ

3γ3
−

ε2x,N
σ4
xβ

2γ2
= 0 (1.33)

A simplified heuristic version of the Serafini-Rosenzweig model is obtained

by dividing the beam into longitudinal slices of width dz and examining the

transverse evolution of the slice at longitudinal position z. Equation (1.33) is

linearized in the limit of zero acceleration (γ′ = 0), and the solution for the RMS

beam size is expanded as a perturbation δσx about the Brillouin equilibrium

value σeq(z) =
√
κs(z)/[(βγ)3K2

x], which yields the small-amplitude equation

δσ′′x(z) = −2K2
xδσx(z). Here, the slice perveance is κs(z) = I(z)/2IA where I(z)

is the current of the slice at z and IA is the Alven current. With the initial
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conditions σx = σ0 < σeq and σ′x = 0 at the cathode (s = 0), the resultant

solution for σx is

σx(z, s) = σeq(z) + [σ0 − σeq(z)] cos(
√

2Kxs) (1.34)

This sinusoidal oscillation about the equilibrium value constitutes a transverse

plasma oscillation. This oscillatory behavior is reflected also in the transverse

emittance which is then given by εx,N(s) = γβ
√
〈σ2

x〉〈σ′2x 〉 − 〈σxσ′x〉, where the

angle brackets denote an average over all slices, weighted by the current density.

This yields the result

εN,x(s) ≈
1

2
γβKxσ0σeq(z0)

δIrms
Ip

∣∣∣sin(
√

2Kxs)
∣∣∣ (1.35)

where δIrms is the averaged RMS deviation from the peak current value Ip which

occurs at point z0. From Eqs. (1.34) and (1.35) we see that the minimum of σx

occurs at
√

2Kxz = 2π which is also the location of the second null in εx,N . This

behavior persists in a qualitative sense even when the acceleration of the beam

is properly taken into account, although the oscillation is no longer sinusoidal in

nature.

In contrast to the illustrative model just presented, the complete Serafini-

Rosenzweig analysis (which utilizes the full RMS envelope equation) successfully

explains the major physical features of the emittance compensation process, and

can be applied to long integrated photoinjectors (i.e. which are joined to a post-

accelerating linac) or to cases where there is a drift region between a small (few

cell) photoinjector and a longer (many cell) linac section. In the latter case,

which is the scenario at the UCLA Neptune Laboratory, the usual experimental

procedure is to place a solenoidal coil immediately after the RF gun and to

place the entrance of the linac section immediately after the beam waist so that

the space charge emittance growth from the gun is fully compensated and the
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beam is well-collimated during post-acceleration, which effectively ”locks in” the

minimized emittance value by virtue of the 1/γ2 dilution of the space-charge

force. The solenoid is generally positioned such that the magnetostatic field

generated by it is zero at the cathode, in order to avoid a longitudinal magnetic

field contribution to the transverse emittance. To this end, a secondary (bucking)

coil is sometimes placed behind the gun in such a way as to zero the magnetic

field in the cathode plane.

1.2.5 Cathode Image Charge Limit

For beams of high charge and/or current density, the force exerted on the beam

by its image charge in the conducting plane of the cathode becomes comparable

to the RF accelerating force. This results in a lengthening of the bunch due to

decceleration of the tail particles and imposes an upper limit on the extractable

charge [11]. A simple model which treats the beam as a flat disk of charge

with a Gaussian transverse profile yields a maximum surface charge density of

Σmax = ε0E0 sinφ0 and an extracted charge Q of [12]

Q = Q0 × {
Σmax

Σ0
[1 + ln( Σ0

Σmax
)] , Σ0 ≥ Σmax

1 , Σ0 < Σmax

(1.36)

where Q0 and Σ0 = Q0/(2πσ
2
x) are the charge and surface charge density which

would be extracted in the absence of the image charge effect. The saturation

begins when Σ0 = Σmax at which point the extracted charge is

Qsat = 2πσ2
xε0E0 sinφ0 (1.37)

Although additional charge may be extracted beyond this saturation value by

further increasing Q0, the returns are logarithmically diminished in accordance

with Eq. (1.36). A more sophisticated analysis, valid for beams of nonzero
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duration, is derived by Travier using the relativistic Child-Langmuir formalism

and treating the beam as a voltage gap of width d [3]. This approach yields a

saturation charge of

Qsat =
2IAσ

2
xσt

9

√
4π

d

(
eE0 sinφ0

mc2

)3/2

(1.38)

where σt is the RMS duration of the laser pulse on the cathode. This result

reduces to that of Eq. (1.37) in the limit of short pulses, except for a multiplicative

constant that is on the order of unity. For typical pulse durations (on the order

of 1 to 10 ps) the correction for nonzero duration is small and Eq. (1.37) may be

used instead. However, in order to avoid bunch lengthening, Traviers recommends

that the bunch charge not exceed one-fifth the saturation value:

Qmax =
1

5
Qsat =

2

5
πσ2

xε0E0 sinφ0 (1.39)

Rosenzweig derives an expression for the final current density of a pulsed

photoinjector in the limit where Q0 << Qmax (or equivalently Σ0/Σmax << 1)

[13]. Let the temporal photon distribution of the drive laser pulse be E(t). The

emitted photocurrent at the cathode as a function of time is then I0(t) = eηqE(t),

where ηq is the effective quantum efficiency (i.e. number of emitted electrons per

incident photon). The longitudinal force experienced by an electron emitted at

time t0 is then Fz = −eE0 sinφ0 +(eΣ0/ε0Q0)
∫∞
−t0 I0(t)dt. This may be rewritten

as Fz = −eE0 sinφ0[1− Σ0

Σmax
G(t0)] where G(t0) ≡ 1

Q0

∫∞
−t0 I0(t)dt. Assuming the

lowest-order form γ̃ for the acceleration in Eq. (1.16) but replacing the acceler-

ation factor α with the form α[1 − Σ0

Σmax
G(t0)], which includes the longitudinal

space-charge contribution, the arrival time t of the particle downstream at point

s, where the particle is assumed to have attained ultrarelativistic energy, is found

to be given by

t ≈ t0 +
s

c
+

1

2kαc sinφ0

[
1

1− Σ0

Σmax
G(t0)

− 1

]
(1.40)
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The final beam current is therefore given by

I(t) =
I0

∂t/∂t0
≈ I0(t0)

1 + Σ0/Σmax

Q02kαc sinφ0
I0(t0)

(1.41)

The denominator represents the expansion factor due to space-charge. In order to

obtain the explicit t-dependence on the right-hand side, it is necessary to invert

Eq. (1.40) and insert the result for t0 as a function of t into Eq. (1.41). In

the limit of Σ0/Σmax >> 2kασz the final current in Eq. (1.41) approaches the

asymptotic value

Imax =
Q02kαc sinφ0

Σ0/Σmax

=
eε0E

2
0 sin2 φ0

mc2

∫
dA (1.42)

where
∫
dA = Q0/Σ0 is the transverse area of the beam. Eq. (1.42) repre-

sents the current limit due to space-charge expansion of the beam. The factor

eε0E
2
0 sin2 φ0/mc

2 is analogous to the Child-Langmuir current density for pulsed

sources [13].

1.2.6 Summary and Limits on Transverse Brightness

We may conclude from the preceding analyses that the laser pulse duration and

injection phase are somewhat predetermined by an interest in obtaining optimal

beam quality. The optimal temporal shape of the laser pulse has also been

investigated and has been found to be a square pulse. The end result is that

the longitudinal phase space of a beam generated by an RF photoinjector tends

to invariably end up resembling that of Fig. 1.2 (a).

One may increase the peak current by scaling the total charge, but in doing so

the other photoinjector parameters must also be scaled appropriately in order to

prevent blowup of the transverse emittance. In the end, although the peak current

increases under such charge scaling, the transverse brightness is diminished by

the resulting dilution of the transverse emittance.
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Rosenzweig and Colby have derived the general charge scaling laws for an

emittance compensated photoinjector [11]. This scaling relies upon keeping the

space charge term in the envelope equation κs/(σ
2
xβ

3γ3) constant. Noting that

the beam perveance is given by κs = 2I/I0 and that the beam current goes as I ∝

Q/σz, we see that this can be accomplished by scaling the bunch dimensions as the

cube root of charge: σx,z ∝ Q1/3. It follows from Eqns. (1.29), (1.18) and (1.23)

that the thermal, RF, and space charge emittance contributions scale as εthx,N ∝

Q1/3, εrfx,N ∝ Q4/3, and εscx,N ∝ Q2/3 respectively. If the various contributions are

represented by εth0 , εsc0 , and εrf0 for an emittance compensated photoinjector with

charge Q0 and current I0, then taking the lower limit in Eq. (1.28) gives the

following scaling for the transverse emittance:

εx,N =

√
(εth0 )2 q2/3 + (εsc0 )2 q4/3 + (εrf0 )2 q8/3 (1.43)

where q ≡ Q/Q0. This equation may be fitted to data or simulation results of

emittance versus charge to extract the parameter values εth0 , εsc0 , and εrf0 for a

given photoinjector design. The transverse brightness then scales according to

B =
2I0

(εth0 )2 + (εsc0 )2 q2/3 + (εrf0 )2 q4/3
(1.44)

We see immediately that brightness decreases with higher charge. Furthermore,

for any reasonable value of the bunch length, the space charge term will dominate,

and so the optimal brightness may be written [11]:

B = 16(2π)9/2αkz
IA(1 + 3

5
ζ)2

σzζ2
(1.45)

This formula provides a rule-of-thumb value for the achievable brightness of a

photoinjector. For experiments that require an electron beam with a higher

brightness, a shorter bunch length, or a different longitudinal bunch shape than

what the photoinjector provides under normal operating conditions, one may
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employ one of various techniques to manipulate the longitudinal distribution of

particles within the bunch. Several such techniques as well as applications which

may benefit from them are discussed in the following two sections.

1.3 Methods of Longitudinal Compression

Attempts to manipulate the longitudinal shape of energetic beams of charged

particles date back to the introduction in the 1960’s and 1970’s of the magnetic

chicane, a device which can either separate or compress a beam of electrons along

the direction of motion, by utilizing the differences in path-length traversed by

particles of different energies. The original proposal for this device came in the

form of a U.S. patent, submitted by Leboutet and Pinel in 1959 and approved in

1962 [14]. Although the device was originally intended as a means of increasing

the length of electron bunches, the technology has subsequently been adapted

as a means of compressing them to short (sub-picosecond) time scales. Other

compression mechanisms have also been proposed, including velocity bunching

[15] and alternative dispersionless configurations of bending beamlines. In the

latter category, the dogleg or dispersionless translating section can be used

as a means of compressing beams or of otherwise manipulating the longitudinal

phase space to shape the time-current profile of the beam [16]. All of these

methods, however, rely upon taking advantage of strong correlations between

energy and longitudinal position in order to shorten the electron bunch.

1.3.1 Magnetic Chicane

An electron beam may be compressed or expanded in the longitudinal dimension

by using dispersive magnetic elements to produce trajectories of different total
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Figure 1.3: Cartoon of a simple chicane compressor.

path-length for particles of different energies. The simplest dispersive magnetic

element is one which produces a uniform magnetostatic field over a finite region

of space (i.e. a dipole magnet). The trajectory of an electron bunch with average

momentum p0 passing through such a magnet with field strength B0 will be bent

in the plane perpendicular to the magnetic field lines by an angle θ = ∆s/R0

where ∆s is the arclength traversed along the beam trajectory and R0 = p0/eB0 is

the bend radius. When applied to a beam which has a strong correlation between

energy and longitudinal position, the resultant longitudinal dispersion (that is

the shift in position of high-energy particles relative to low-energy particles within

the bunch due to differences in energy) will cause the beam to either expand or

contract in length, depending upon the sign of the correlation.

A single dipole magnet would bend the electron beam’s path away from its

original trajectory, which is often undesirable. Assuming that one wishes to

return the electron beam to a path colinear with its original one, then the simplest

configuration for a magnetic compressor of this type is a set of three consecutive
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dipole magnets where the first and third magnet are identical, but the field in

the middle magnet is reversed, and is either twice as strong or twice the length of

the end magnets. This configuration, called a magnetic chicane, is a commonly

employed method of bunch compression in linear accelerator systems. A cartoon

drawing of a chicane is shown in Fig. 1.3. The trajectory of a particle with the

central momentum of the bunch p0 is shown in black and the trajectory of an off-

energy particle with momentum p0+δp is shown in red. Due to the different bend

radii, the higher-energy particle will traverse a shorter path through the device

and will therefore move forward in longitudinal position z within the bunch. For

a bunch that is initially chirped such that the higher energy particles lie in the

tail of the beam (see the subset plots of momentum error vs. z in Fig. 1.3), the

tail particles will move forward and the particles at the head will move backward

within the bunch. The result is that the bunch is longitudinally compressed at the

exit of the device. The required chirp may be imparted to the beam by choosing

the phase of the RF in one of the post-accelerating structures downstream of the

photoinjector gun such that the beam is injected forward of the crest of the peak

accelerating field. The chirp may alternatively be created in the photoinjector

itself, but as discussed in Section 1.2.1, operating the photoinjector away from

the optimal phase φopt degrades the emittance of the beam.

The magnitude of the compression is measured by the so-called momentum

compaction αc which is related to the path-length difference ξ between the particle

with momentum p0 and that of momentum p0 + δp by way of

ξ = ∆s αc
δp

p0

(1.46)

where ∆s = s− s0 is the total path-length traversed by the central particle from

the entrance to the exit of the device. The quantity ∆s αc is proportional to

the longitudinal dispersion ηz, which is defined as ∂z/∂δ where z is longitudinal
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position within the bunch and δ = δp/p0. The quantity ∂z/∂δ is an element of

the 6× 6 transport matrix of partial derivatives of final coordinates with respect

to initial ones. This matrix formalism will be presented in Chapter 2, where its

use in calculating quantities such as ηx and ηz for compound systems of magnets

will be explained. The momentum compaction may be written as an integral

over the curvature k(s) of the central trajectory and the horizontal dispersion

function ηx(s) as

αc =
1

∆s

∫ sf

s0

k(s) ηx(s) ds (1.47)

The dispersion function ηx may be regarded as the x-coordinate (relative to the

bunch centroid), which is chosen to lie in the plane of the bend, of an off-energy

particle with a momentum deviation of δp/p0 = 1 expressed as a function of

longitudinal position s. The dispersion function for a simple chicane of the sort

shown in Fig. 1.3 may be derived using the previously mentioned matrix formal-

ism of Chapter 2. Plots of the dispersion function and the curvature (normalized

by the magnitude of the bend radius R) as functions of integrated arc-length s

traversed along the beam trajectory are superimposed in Fig. 1.4. Their product

is highlighted by the solid curve, making clear that for such a system the area

under the solid curve [and hence the momentum compaction as defined in Eq.

(1.47)] is negative, and therefore the path-length difference ξ is negative for par-

ticles with momentum greater than p0 and positive for particles with momentum

less than p0.

Additional design features may be implemented to improve the performance

or versatility of the device, such as splitting the middle magnet into two identical

magnets, the use of edge angles on the entrance and exit pole faces to provide

vertical focusing, or the introduction of other magnetic elements between the

bend magnets to focus or to correct nonlinear effects. Furthermore, although
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Figure 1.4: Plots of the curvature and dispersion function for a chicane.

the description we have presented illuminates the basic mechanism for compress-

ing the electron beam, various other physical effects may be important, some of

which can have a negative impact on beam quality. These include space-charge

effects which can cause degradation or bifurcation of the horizontal phase space

distribution [17], and emittance increase due to coherent synchrotron radiation

[18]. The minimum achievable pulse length obtainable is ultimately limited by

the intrinsic energy spread of the beam and by the degree of RF curvature im-

posed upon the longitudinal phase space. Theoretical limits are in the tens of

femtoseconds (RMS), if the beam is sufficiently short to start with, has sufficiently

high energy, and the energy-time correlation is quite linear [19]. But to obtain

the required (picosecond-level) pre-compression bunch length, an additional prior

stage or stages of compression may be needed [20].
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Figure 1.5: Illustration of ballistic bunching compression.

1.3.2 Velocity Bunching

Velocity bunching is a scheme which uses an accelerating RF structure to impart

energy correlations onto a moderately relativistic electron bunch in order to pro-

duce a longitudinal compression. Two forms of this technique are represented in

the literature, which we will refer to respectively as ballistic bunching and phase

space rotation respectively, following the nomenclature of Ref. [21].

In ballistic bunching, the accelerating structure is phased so as to impart a

negative chirp on the beam in the longitudinal phase space, with particles at the

tail of the beam at higher energy than the head. The compression then occurs in

the drift region following the accelerating structure, as differences in velocity per-

mit the trailing high-energy particles to ”catch up” to the lower energy particles

at the head, thereby producing a net compression of the bunch. This technique

requires that the central bunch energy be at most moderately relativistic, since

the velocity differences between particles within the bunch will become smaller as

the bunch becomes more energetic, thereby requiring longer and longer drifts in

order to actualize the compression. The drift length L required to fully compress
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the beam is related to the normalized beam energy γ by [21]

L =
γ3

dδ/dz
(1.48)

where δ = δp/p0 is the fractional momentum deviation from the centroid mo-

mentum p0 and z is longitudinal position within the bunch. The derivative in the

denominator is intended to represent the slope of the chirp imparted to the beam

distribution by the accelerating structure in the trace space of δ and z. This

chirp is related to that prior to the accelerating structure used for the velocity

bunching by the relation

dδ

dz
=

(
dδ

dz

)
init

+ k
∆pmax
p0

(
sinφ

1 + ∆pmax

p0
cosφ

)
(1.49)

where k is the RF wavenumber, ∆pmax is the maximum longitudinal momentum

kick the structure imparts, and φ is the RF phase relative to the crest (i.e. the

phase corresponding to maximum accelerating force).

An alternative method of velocity bunching proposed by Serafini and Fer-

rario in Ref. [15] relies upon producing a one-quarter rotation of the longitudinal

phase space distribution of the electron beam using a traveling wave accelerat-

ing cavity with a phase velocity less than the speed of light. Compression is

produced by imparting and then smoothly removing an energy-time correlation

inside of the structure. The basic mechanism can be illuminated by examining

the Hamiltonian for a particle of energy γ in a traveling wave with phase velocity

vr:

H(φ, γ) = γ − βr
√
γ2 − 1− α cosφ (1.50)

Here φ is the phase of the particle relative to the crest of the wave, βr = vr/c, and

α is the dimensionless acceleration factor defined in Section 1.2.1. Level sets of

the Hamiltonian in the phase space of γ and φ are plotted in Fig. 1.6, for values

of α = 0.2 and γr =
√

1− β2
r = 12. The separatrix is shown in bold and the
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Figure 1.6: Illustration of phase space rotation velocity buching, show-
ing (a) the full separatrix, in bold, and (b) a closeup of the bottom
portion.

value of γr is marked by a horizontal dashed line. Part (a) of the figure shows the

entire separatrix, while (b) is a closeup of the bottom portion of the phase space

plot. Orbits lying within the separatrix are closed and represent the trajectories

of particles trapped in an accelerating phase of the wave. An unchirped beam

(i.e. with zero energy-time correlation and a small energy spread) injected into

the wave with a moderately relativistic energy (point A) will slip back in phase

as it is accelerated along the closed orbit in phase space and will arrive at point

B where the beam energy is equal to the equivalent γr of the wave. As seen in

the figure, the phase space contours become nearly parallel and vertical, so the

movement of the electrons along these contours produces an inherent compression

in phase, with the maximum compression occurring at point B.

If the initial energy spread were zero then under this model, the final bunch

length would differ from zero only because of nonlinearities in the phase space
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transformation imposed upon the bunch as it travels from point A to point B

along the contours. Consequently, a reasonable picture of the compression re-

quires inclusion of the intrinsic energy spread δγ0. If δφ0 is the deviation from

zero of the injection phase of a particle in the vecinity of point A and φr+δφr is its

phase upon extraction in the vecinity of point B, then equating the Hamiltonian

at the two locations gives

α cos(φr + δφr) =
1

γr
− (γ0 + δγ0) + βr

√
(γ0 + δγ0)2 − 1 + α cos δφ0 (1.51)

Expanding the cosines in power series to lowest order produces the result [15]

δφr
δφ0

=
1

2δφ0| sinφr|

[
δφ4

0 +
(
δγ0/αγ

2
0

)2]1/2
(1.52)

from which we see that the fractional compression is ultimately limited by a

combination of the phase spread and the initial energy spread δγ0/γ0. In the

limit where the wave phase velocity approaches the speed of light, the top of the

separatrix in Fig. 1.6 moves upward and the contours asymptote toward vertical

lines extending to infinite γ. In this case, a full quarter rotation in phase space

can still be achieved by simply injecting the beam slightly forward in phase.

1.3.3 Dogleg Compressor

As a general rule, any nonisochronous configuration of bending magnets can be

used for bunch compression. One such configuration, the dispersionless translat-

ing section, known in accelerator jargon as a dogleg, is shown in Fig. 1.7. This

device consists of two bend magnets (shown as yellow wedges in the figure), whose

bend angles are equal in magnitude but opposite in sign, with focusing optics in

between (represented here by blue lenses). Its primary use is to switch the beam

between two parallel beam lines. At user facilities, arrays of such configurations

are used to divert the beam to one of several different experiments being hosted
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Figure 1.7: Drawing of a dogleg.

on separate beam lines.

The lenses (corresponding to magnetic quadrupole fields) are required in order

to force the horizontal dispersion function and its derivative to zero at the exit

of the device. This is illustrated in Fig. 1.8, which shows a plot of the dispersion

function ηx, the curvature k which is nonzero only inside the bend magnets, and

their product, denoted by the thick solid curve. Due to the positive excursions

executed by the dispersion function in the bending regions, the total path-length

traversed by an off-energy particle of momentum p0 + δp is greater than that of

the design particle for positive δp and less than that of the design particle for

negative δp. In other words, it has the opposite longitudinal effect to that of a

chicane.

It should be noted that although a variety of different lens configurations may

be used, the plots shown in Fig. 1.8 correspond with the simple layout of Fig.

1.7. However, regardless of the chosen setup of lenses between the bend magnets,

the momentum compaction for a properly compensated dogleg (as will be shown

explicitly in Chapter 3) is given by

αc =
R0

∆s
(
π

2
−
√

2) = 0.156
R0

∆s
(1.53)
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Figure 1.8: Example dispersion function for a dogleg.

Consequently, the value of the momentum compaction is positive in this case,

opposite in sign to that of a chicane, as required by the physical description

given above. The required energy-time chirp for compression therefore must also

be positive (dδ/dz > 0), with higher energy particles at the head of the bunch.

This can be accomplished by appropriate phasing of the electron beam upon

injection into the accelerator. The positive sign of the momentum compaction

(or negative longitudinal dispersion) of the dogleg compressor is what ultimately

makes possible the longitudinal bunch shaping technique, discussed in Chapter

3, which forms the core topic of this dissertation.

1.4 Applications of High-Brightness Ultrashort Beams

1.4.1 Inverse Compton Scattering

Pulses of x-rays with durations on the order of a few hundred femtoseconds are of

interest in a variety of areas of research, including the probing of sub-molecular

chemical and biological processes as well as the development of polarized proton

sources for high energy physics applications. Scattering of an intense laser beam
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off of a high-brightness bunch of electrons is a promising technique for the gen-

eration of ultrashort pulses of short-wavelength and narrow spectrum radiation

[22], and has consequently been a subject of various recent experimental efforts

[23, 24, 25]. The scattering of photons off of moving electrons is referred to as

inverse Compton scattering (ICS). Scattered photons are upshifted in energy by

a fractional amount

hν ′

hν
=

1− β cosα

1− β cosα′ + (hν/γmc2)(1− cosψ)
(1.54)

where α and α′ are the angles between the incoming and outgoing photons and

the incident electron, ψ is the angle between the incoming and outgoing photons,

ν and ν ′ are the incident and outgoing photon frequencies, h is Planck’s constant,

and β = v/c, γ = U/mc2 are the normalized electron velocity and energy [26].

The scattering geometry is shown in Fig. 1.9 (a). If the photon energy is compa-

rable with the relativistic electron energy, then the upshift becomes increasingly

small, tending to values less than unity as the photon energy exceeds that of the

electron. Therefore, assuming that the incident photon energy is small compared

with the relativistic electron energy (hν << γmc2), the distribution given by Eq.

(1.54) becomes peaked in the vecinity of ψ ≈ α with a maximal value of(
hν ′

hν

)
max

=
2

(1/2γ2) + 2(hν/γmc2)
(1.55)

The differential scattering cross-section is proportional to the square of the fre-

quency distribution:

dσ

dΩ
=

e2

mc2

(
hν ′

hν

)2
X

2γ2(1− β cosα)2
(1.56)

Consequently, the angular distribution is similarly peaked near the forward di-

rection of the incident electron (i.e. ψ ≈ α). (Note, however, that additional

angular dependence is contained in the factor X which also includes the polar-

ization dependence.) The interaction of a short laser pulse with a relativistic
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Figure 1.9: Collision geometry for inverse Compton scattering.

electron beam thus produces a pulse of upshifted radiation directed along the

path of the electron beam, as illustrated in Fig. 1.9 (b). The interaction angle

α between the beam and the laser is generally chosen to be either 90 degrees

(right-angle collision) or 0 degrees (head-on collision). The limit (hν << γmc2)

when observed in the rest frame of the electron beam corresponds to the nonrel-

ativistic limit of ordinary Compton scattering. The total cross-section for ICS in

the low-energy photon limit is therefore equal to the (Lorentz invariant) classical

Thomson cross-section: σ = σT = (8π/3)(e2/mc2). This type of scattering is

therefore sometimes called Thomson scattering. The total photon count of the

scattered pulse is then given by Nph = L σT , where L is the luminosity of the

collision, which is proportional to the number of electrons interacting with the

laser field.

The shortness of the duration of the scattered radiation pulse is constrained

by the interaction time of the electron bunch and the incident laser. Therefore, in

order to obtain sub-picosecond x-ray pulses, the incident laser and electron bunch

must be sub-picosecond in duration (in a head-on collision scenario) or else the
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electron bunch must be focused to a very tight waist at the interaction point (in

the case of a 90-degree scattering geometry). In either scenario, it is desirable to

maximize the charge density in the interaction region, requiring electron beams

of high current and short bunch length, as well as strong transverse focusing.

However, the large energy spreads required for magnetic compression techniques

used to obtain high current beams may result in chromatic aberrations in the

focusing system. In recent ICS experiments conducted at the PLEIADES x-ray

source facility at Lawrence Livermore National Laboratory, very high-gradient

(500 T/m) permanent magnet quadrupole magnets were used to overcome these

chromatic aberrations and obtain spot sizes on the order of tens of microns [27].

1.4.2 Free Electron Laser

The free electron laser (FEL) is a technique for generating intense coherent radi-

ation over a wide range of frequencies, including those which are too high for the

use of traditional optics. The seminal theory was provided by Madey [28]. In a

free electron laser an electron beam is injected into a periodic magnetic field (an

undulator or wiggler). The transverse oscillation of the electrons in the magnetic

field produces coherent radiation at the fundamental resonant wavelength

λ0 =
λu
2γ2

(1 +K2) (1.57)

where λu is the spatial period of the undulator field, γ is the relativistic Lorentz

factor of the electron beam, and K is a dimensionless parameter measuring the

field strength of the undulator. For a helical undulator, K = eBu2π/mcλu where

Bu is the peak magnetic field of the undulator. For a planar undulator, Bu is

replaced by Bu/
√

2 in this expression. Note the similarity between K and the

normalized electric field parameter α used in the photoinjector theory of Section

1.2.1.
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Due to poor electron beam quality, early FELs used a seed pulse and mirrors

to create an optical cavity with multiple passes of the radiation through the un-

dulator. The advent of the modern photoinjector and the resultant improvement

in electron beam brightness has allowed for sufficient improvement in the FEL

amplification process that saturation can be reached in a single pass. This has

opened the possibility of lasing in the very ultraviolet (VUV) and x-ray regimes

where optical mirrors are transparent. However, since traditional lasers do not

exist at such frequencies, the FEL in this scenario must either be operated at a

higher harmonic of the seed laser pulse (high gain harmonic generation or HGHG)

[29] or must start up from noise (self amplified spontaneous emission or SASE)

[30, 31, 32].

In the 1-D theory of single-pass FEL operation, the normalized field amplitude

A of the produced radiation as a function of distance along the undulator z is a

superposition of exponential solutions of the form

A =
∑
j

Aje
ikjz (1.58)

where kj = 4πρΛj/λu is the growth rate of the j’th mode, and Λj are solutions of

the 1D dispersion relation, which in the absence of space charge takes the form

[33]

(Λ + δ)2Λ + 1 = 0 (1.59)

The so-called Pierce parameter ρ and detuning δ are defined by

ρ =

[
KfcλuγΩp

4cγ2
R2π

]2/3

; δ =
γ2 − γ2

R

2ργ2
R

(1.60)

where fc is a coupling factor of order unity, Ωp is the plasma frequency of the

electron beam, and γR = k(1 +K2)λu/4π is the resonant energy.

Equation (1.59) produces one real and two complex solutions. Among the

latter, the solution which has a negative imaginary part produces a continuous
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exponential growth of the radiation field, giving rise to the so-called “high-gain

regime.” Calling this solution Λg, we see that it will begin to dominate Eq. (1.58)

for sufficiently large z, particularly if z is greater than the so-called gain length

given by Lg = λu/(4πρRe[iΛg]). It can be shown that the gain is maximum in

the case of zero detuning [i.e. the wavelength of highest gain is the one given by

Eq. (1.57)], in which case Λg = (1/2)− i(
√

3/2), producing the solution [32]

Lg =
λu

2
√

3πρ
(1.61)

The gain length is increased above this 1D value by the effects of diffraction,

energy spread (σγ), and slippage (S = λNu) if the following conditions are not

met: εx,y ≤ λ/4π, σγ/γ < ρ, S < σz, and ZR > Lg, where Nu is the num-

ber of undulator periods and ZR is the coherent FEL radiation Rayleigh range

[31]. Physically, the high-gain regime of the FEL corresponds with a collective

instability produced by the exchange of energy between the electron beam and

the radiation field, producing a ponderomotive microbunching of the electrons

[34]. The process saturates when the beam is maximally bunched, typically after

about 10 gain lengths.

The ρ parameter provides a figure of merit for the FEL, as maximizing its

value reduces the gain length and increases the amplification. Noting that the

plasma frequency scales with electron density ne as Ωp ∝ n
1/2
e , we have that

ρ ∝ n
1/3
e . So the inverse gain length, and hence the output power, scales directly

with the cube root of charge density, making high current and brightness critical

to obtaining multiple order of magnitude gain in an undulator of reasonable (a

few meters) length. Consequently, photoinjector beams are typically used in

conjunction with chicane compression prior to injection into the undulator.

Additionally, particularly in the HGHG scheme, a pre-bunching undulator is

used to create an energy modulation of the beam which is then translated into
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spatial microbunching with a chicane in order to enhance the amplification of

the seed pulse in the primary undulator. In this context, it has recently been

proposed that the use of a beam with a triangularly ramped current profile may

help to counteract inhomogeneity in the microbunching due to slippage [35]. This

proposal requires further study, but is of particular interest here because the

primary experimental work of this dissertation revolves around the generation

of ramped electron bunches for application to the plasma wake-field accelerator.

The latter application is discussed in the following sections.

1.4.3 Plasma Wake-Field Accelerator

Traditional RF accelerators, which rely upon coupling high-peak-power (megawatt)

microwave energy into a standing or traveling wave cavity are limited to peak ac-

celerating gradients on the order of 100 MV/m by the electrical breakdown limit

of the metallic structures. This limitation means that in order to reach beam

energies of interest to the high energy physics community (i.e. hundreds of GeV

to TeV) accelerators must be kilometers in length, creating numerous technical

and cost issues and requiring years of planning and construction.

Due to their capacity to support large electric fields, plasmas have been con-

sidered in recent years as a means for acceleration of charged particles capable

of producing field gradients larger than those achievable with traditional radio-

frequency linear accelerating cavities by several orders of magnitude. Longitu-

dinal field gradients in excess of 1 GeV/m can be obtained by the excitation

of large-amplitude relativistic waves in a plasma. Various acceleration schemes

have been proposed which rely upon driving such plasma waves, using either a

short intense laser beam (laser wakefield accelerator, LWFA) or a short relativis-

tic electron beam (plasma wakefield accelerator, PWFA) [36, 37, 38, 39, 40]. The
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issues of beam quality associated with the drive beam in the PWFA scenario will

be found to be relevant to the experimental goals of this dissertation, namely

the generation and measurement of ultrashort electron beams with a triangularly

ramped current profile.

The 1D fluid theory of longitudinal plasma waves was developed in 1956

by Akhiezer and Polovin [41], and was later reinterpreted for the PWFA by

Rosenzweig [42]. Starting from Maxwell’s equations and the fluid equation of

motion, one obtains a nonlinear differential equation for the normalized plasma

fluid velocity β = vz/c as a function of the wave phase φ = ωp(t− z/vb):

d2

dφ2

1− βbβ√
1− β2

= β2
b

(
β

βb − β
+
nb
n0

)
(1.62)

Here nb and n0 are the drive beam and background (unperturbed) plasma densi-

ties respectively, and βb = vb/c is the normalized beam velocity which is also the

phase velocity of the wave. Equation (1.62) can be solved analytically in terms

of elliptic integrals for the homogeneous case (nb = 0). The pertubed plasma

density n and electric field Ez are then given by

Ez
E0

=
1

βb

d

dφ

1− βbβ√
1− β2

(1.63)

n =
n0βb
βb − β

(1.64)

where E0 ≡ mcωp/e. The maximum electric field supported by the plasma occurs

in the so-called wavebreaking limit, where the plasma fluid velocity β exceeds the

phase velocity βb of the wave resulting in the crossing of fluid element trajecto-

ries. This limit therefore also represents the breakdown of the fluid theory, since

the fluid variables become multivalued functions. The relativistic electric field

amplitude Em is related to the peak fluid velocity βm by [41]

Em
E0

=
√

2

(
1√

1− β2
m

− 1

)1/2

(1.65)

38



The wavebreaking electric field EWB is then given by this equation as βm → βb.

We can deduce the limiting forms EWB = βbE0 and EWB =
√

2E0(1− β2
b )

1/4 for

the small amplitude (Em/E0 << 1) and large amplitude (Em/E0 >> 1) cases

respectively. In terms of drive beam parameters the maximum achievable field

occurs for a delta-function beam with charge density ρb = σbδ(φ) where σb =

Q/
∫
dA is the charge divided by the transverse area of the beam, in which case,

the field amplitude is Em = 4πσb. Since the driver is a delta function, the solution

for Ez with this amplitude represents the Green’s function. In the low-amplitude

case, the Green’s function is a truncated sinusoid: G(φ) = 4π cos(φ)H(φ), where

H is the Heaviside step function. The linear wakefield for an arbitrary 1D drive

beam distribution is therefore given by

Ez(φ) =

∫ ∞

−∞
ρb(φ

′)G(φ− φ′)dφ′ = 4π

∫ ∞

φ

ρb(φ
′)cos(φ− φ′)dφ′ (1.66)

The shape and amplitude of the wakefield are thus intimately related to the

longitudinal shape of the drive beam. For example, for a Gaussian beam with

RMS length σφ = kpσz, the wakefield obtained from Eq. (1.66) is

Ez(φ) = πσbe
−σ2

φ/2
[
e−iφerf(w) + eiφerf(w∗)− 2 cos(φ)erf(1)

]
(1.67)

where w ≡ (φ−iσ2
φ)/
√

2σφ. This function is plotted for an RMS value of σφ = 1/2

in Fig. 1.10 (a). For values of σφ < π, the peak amplitude of the accelerating

wakefield behind the bunch occurs very close to φ = −π, in which case it assumes

the form

E+ ≈ 4πσb
e−σ

2
φ/2

4

[
2erf(1) + erf(

π − iσ2
φ√

2σφ
) + erf(

π + iσ2
φ√

2σφ
)

]
(1.68)

which is a monotonically decreasing function of σφ. The naive assumption then

would be that the optimal drive beam is one of nearly zero length (σφ → 0), in

which case E+ assumes the maximal value of 4πσb.
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Figure 1.10: Plots of (a) the wakefield for a Gaussian 1D bunch and
(b) the accelerating and retarding fields and corresponding transformer
ratio.

However, as seen in Fig. 1.10 (a), the peak field E− inside of the bunch is

deccelerating and will tend to deplete the drive bunch energy γb after a dis-

tance of approximately ∆z ≈ γbmc
2/qE−. Over the same distance, the in-

crease in energy of a test particle in the accelerating field behind the bunch

is ∆γ ≈ qE+∆z/mc2 = (E+/E−)γb. So a better figure of merit for the wake-

field accelerator is the maximum fractional energy gain which the wakefield can

produce as measured by the ratio R = E+/E− which is termed the transformer

ratio. The peak fields E+ and E− and their ratio R are plotted in Fig. 1.10 (b) as

functions of bunch length σφ = kpσz. We see that the maximum value is R = 2,

which occurs at σφ =
√

2. In fact, it has been shown that for any symmetrical

bunch, 2 is the maximal value of the linear 1D transformer ratio [43, 44].

It should be noted that the 1D theory is valid only in the case of a pancake

beam whose transverse size is much greater than its longitudinal size σx,y >> σz.

In fact, the primary operating regime of the PWFA, the so-called blowout regime,

is one in which this assumption breaks down. In the blowout regime, the beam

density is sufficiently larger than the ambient plasma density (nb > n0) that the

plasma electrons are blown radially outward, forming a rarified ion channel behind
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the drive bunch, which provides a linear focusing force of strengthK = 2πren0/γb.

Furthermore, the accelerating wakefield (Ez) is radially uniform across the width

of the bunch [45]. These qualities make this regime highly desirable from the

perspectives of drive beam stability and uniformity of acceleration.

The mechanics of the blowout process itself is inherently nonlinear and mul-

tidimensional and involves wavebreaking. A nonrelativistic radial fluid approx-

imation may be used to describe certain aspects of this regime [45, 46]. This

treatment gives an approximate radial equation of motion for the radius r of a

2D fluid element (i.e. a ring of plasma) of initial radius r0 as a function of wave

phase φ:
d2r

dφ2
= −r

2
+

1

r

[
r2
0

2
+

∫ r

0

r′
nb(r

′, φ)

n0

dr′
]

(1.69)

from which the blowout behavior of the ion channel can be calculated (at least

up to the point of wavebreaking). This analysis gives a maximum blowout radius

of rmax = 2.58
√

Λ, where Λ = k2
p

∫∞
0
r nb(r, 0)/n0 dr is the normalized charge

per unit length of the drive bunch. For a bi-Gaussian bunch, Λ = (n̂b/n0)k
2
pσ

2
r ,

where n̂b = nb(0, 0). For sufficiently large beam density (n̂b/n0 > 10) almost all

electrons are expelled from the region inside this radius. This depletion of the

electrons in the ion column results in a saturation of the longitudinal wake-field

amplitude, which has the following approximate dependence:

Emax
E0

≈ 1.3Λ ln
1√

Λ/10
(1.70)

In the linear regime (n̂b/n0 << 10) this expression is replaced by

Emax
E0

≈ 1.3Λ ln
1√
Λ

(1.71)

An accurate calculation of the transformer ratio in the blowout regime gen-

erally requires the use of 2D fluid codes, or particle-in-cell (PIC) simulations.
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Values obtained thereby tend to be slightly lower than what is predicted by a

linear 1D calculation, such as that shown in Fig. 1.10 for the Gaussian beam.

Nevertheless, as the dependence of the transformer ratio on the current distribu-

tion is qualitatively similar in these cases, the linear theory provides a useful rule

of thumb for both the nonlinear 1D and blowout regimes. As mentioned above,

for asymmetric beams the transformer ratio can in principle exceed the usual

limit of R = 2. Consequently, in the following section we explore the question of

what type of current distribution in the drive beam produces the highest possible

value for the transformer ratio.

1.5 Motivation for this Dissertation

1.5.1 Optimal Plasma Wake-Field Drive Beam

The theoretical and experimental investigations which will comprise the primary

focus of this dissertation initially arose from an interest in discovering methods

for tailoring the current profile of a photoinjector beam to make it optimal for

use as a plasma wakefield accelerator drive beam. As discussed in Section 1.4.3,

the transformer ratio (equal to the maximum energy gain of a witness particle

as a fraction of the drive beam energy) is a figure of merit for the PWFA. The

amplitude and transformer ratio of the wakefield generated in the PWFA was

found to be intimately connected, via Eq. (1.66), to the charge density ρb = enb

of particles in the drive beam. The linear 1D wakefield of a Gaussian beam was

calculated directly and shown in Fig. 1.10 to have a maximum transformer ratio

R = 2 for a bunch length of σz =
√

2/kp.

For symmetric bunches, R = 2 is the maximum achievable transformer ratio

[43, 44]. It has also been theoretically predicted that this limit can be exceeded
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Figure 1.11: PWFA with ramped drive beam and witness bunch.

if the current profile of the drive bunch is asymmetric. In addition, the use

of a linearly growing train of bunches has recently been reported at Argonne

National Laboratory to produce an enhancement of the transformer ratio [47].

For the case of a single drive bunch, an investigation, using linear 1D theory,

of the bunch shape that produces the maximum possible transformer ratio was

conducted initially by Bane, Chen, and Wilson [48]. The optimal current dis-

tribution was found to be the one which produces a retarding field that is the

same for all particles within the drive bunch and vanishes outside of it. Since

a retarding field that arises instantaneously from zero at the head of the bunch

would be unphysical, a form is proposed with a more gradual exponential rise at

the head:

Eret(φ) ∝

 (1− e−αφ) , 0 < φ < Φ

0 , otherwise
(1.72)

where L is the length of the bunch and Φ = kpL. Equation (1.66) is then inverted

using the Laplace transform L to solve for the current distribution:

ρb(φ) =
1

2πi

∫ ε+i∞

ε−i∞

L[Eret(φ)]

L[G(φ)]
esφds (1.73)
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yielding the result

ρb(φ) =
kpσb
AΦ

[(α2 + 1)eαφ − (αφ− 1)] ; 0 < φ < Φ (1.74)

where

AΦ = Φ− e−αΦ − 1

α
− α

(
e−αΦ − Φ2

2
− 1

)
(1.75)

is the normalization constant. Equation (1.74) describes a triangular ramp with

an exponentially increasing component at the head. The maximum transformer

ratio occurs in the limit α→∞ in which case the wakefield assumes the form

Ez(φ) =
4πσb

1 + Φ2/2

 Φ sin(φ+ Φ)− cos(φ+ Φ) ; φ < −Φ

−1 ; −Φ < φ < 0
(1.76)

Dividing the maximum amplitudes of the top and bottom lines gives a transformer

ratio of R =
√

1 + Φ2 ≈ Φ = kpL. Consequently, R > 2 if the drive bunch is

longer than 2 plasma skin-depths (L > 2k−1
p ). However, the ideal bunch shape

given by Eq. (1.74) is very nonphysical due to the sharp spike at the head. A

simple triangular ramp, ρb(φ) = −(kpσbφ)/(Φ2/2), gives the following wake-field:

Ez(φ) =
4πσb
Φ2/2

 cos(φ)− cos(φ+ Φ)− Φ sin(φ+ Φ) ; φ < −Φ

cos(φ)− 1 ; −Φ < φ < 0
(1.77)

The extrema of the top line can be expressed analytically in terms of inverse

trig functions, but it is not particularly illuminating to do so. Its maximum value

is approximately Φ and that of the lower line is exactly 2, giving a transformer

ratio of R ≈ Φ/2, which is half that of the ideal case. An alternative distribution

considered in Ref. [48] is that of a triangular ramp with a rectangular pulse for

the first quarter of a period. This distribution produces a transformer ratio which

is almost identical to the ideal one: R =
√

1 + (1− π/2 + Φ)2 ≈ Φ. The three

distributions and their respective transformer ratios are displayed in Fig. 1.12.

44



Figure 1.12: Several bunch distributions and their transformer ratios.

These results apply strictly only in the 1D linear regime. However, the use

of a truncated Gaussian (which closely resembles a triangular ramp) was investi-

gated in the blowout regime by Rosenzweig [45], who found, for a bunch length of

approximately kpL = 4π a transformer ratio of 5.6 in the simulation, as compared

with the value R = 7.85 predicted by linear theory. And Lotov has recently de-

termined the optimal profile shapes for both the drive and witness bunches in the

blowout regime through 2D particle-in-cell simulations using LCODE [49]. The

optimal drive bunch current profile obtained in these cases turns out to be close

to that predicted by the 1D theory. Consequently, the highest transformer ratio

in the various regimes (linear 1D, nonlinear 1D, and blowout) is produced by a

drive beam with a ramped current profile. Physically, we can interpret this as

an induction problem. The adiabatic rise in current minimizes the electric field

inside the beam and maximizes the potential energy stored in the plasma, which

is released when the bunch current drops to zero, producing a large-amplitude

plasma oscillation. The predicted features of this oscillation (sinusoidal, nonlin-

ear, wavebreaking) depend upon the physical model used, but as the released

energy is of similar magnitude in all cases, the various models give similar results

for the overall transformer ratio.
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Figure 1.13: Idealized current profile and 2D simulation results.

1.5.2 The Road to Ramped Electron Bunches

An example of a longitudinal trace space distribution which produces a cur-

rent density that approximates the idealized doorstep profile shown in Fig. 1.12

is shown in Fig. 1.13 (a) below (courtesy of J. B. Rosenzweig). This distri-

bution was artificially created by applying a linear transformation to the set of

trace space coordinates produced by a photoinjector simulation using the particle

tracking code PARMELA. In part (b) the current profile (in red) corresponding

to the distribution of part (a) is superimposed with the idealized doorstep profile

predicted by the linear 1D theory (in black) to optimize the transformer ratio in

a plasma wakefield accelerator scenario. A two-dimensional particle-in-cell (PIC)

simulation of the longitudinal wake-field excited by this beam with 4 nC of charge

in a plasma of density 1016cm−3, shown in Fig. 1.13(c) predicts a peak field of 10

GV/m with a transformer ratio of 11, which is close to the value R = 4π ≈ 12.6

predicted by the linear theory for the idealized distribution.

The linear transformation used to artificially generate the distribution of Fig.

1.13(a) is of the form z = z0+ηzδ where ηz is a negative number. The distribution

of particles in z0 and δ prior to this manipulation had a positive chirp dδ/dz0 > 0,

which was created in the PARMELA simulation by setting the simulated injection
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phase back-of-crest in the accelerating section. A linear transformation of this sort

is analogous to the compression mechanism of the dogleg, which was discussed in

Section 1.3.3, with the association ηz ≈ −αc∆s where αc was the (positive-valued)

momentum compaction given by Eq. (1.53) and ∆s is the total path-length

traversed through the device. The quantity ηz, which is termed the longitudinal

dispersion, will be defined more rigorously in Chapter 2.

Thus, the scheme we propose for generating ramped electron bunches is to

use a dogleg compressor to impart a linear transformation upon the longitudinal

trace space of a positively chirped photoinjector electron bunch in order to pro-

duce a distribution resembling that of Fig. 1.13(a), which is characterized by a

gradually rising current density at the head followed by a sharp drop to zero at

the tail. As we will see in Chapter 3, the actual z-transformation produced by

the dogleg compressor is not truly linear, but possesses higher-order (nonlinear)

contributions which tend to distort the longitudinal trace space distribution of

the bunch and destroy the ramped shape of the current profile. The dominant

nonlinear effect will be found to be second-order in the momentum error, and its

removal by the use of sextupole corrector magnets will be seen to eliminate the

majority of the undesired distortion of the current profile.

1.5.3 Summary of Experimental Goals

The primary experimental goals of this dissertation are: (1) the design and con-

struction of a dogleg compressor for the UCLA Neptune Laboratory suitable for

producing ramped electron bunches, (2) the development and implementation

of temporal diagnostics with which to probe the longitudinal structure of these

electron bunches on sub-ps time scales, and (3) the experimental generation and

temporal measurement of ramped bunches as a proof-of-principle verification of
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the mechanism proposed in the previous section. The diagnostics employed are:

(1) coherent transition radiation interferometry and (2) a transverse RF deflect-

ing cavity. As the high frequency deflecting cavity is a new technology developed

expressly for this experiment, Chapter 4 will be devoted primarily to the details

of its design and construction. The experimental results will be presented in

Chapter 5. Future efforts using the Neptune dogleg compressor are discussed in

Chapter 6.
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CHAPTER 2

First and Second Order Beam Optics

The single-particle dynamics of a charged particle beam in a magnetostatic field

are referred to as beam optics. This naming convention arises from the fact

that magnetic fields are used to focus, bend, and otherwise manipulate beams

of particles in ways that are similar to the uses of lenses, mirrors, and prisms in

traditional optics to focus, reflect, or spectrally separate a beam of light. Also, as

in traditional ray optics, matrices may be used to describe the effects of particular

optical elements upon a beam particle. The effect of a series of optical elements

may be modeled by multiplying together their respective matrices. In beam

optics, this matrix formalism operates on rays defined in a 6-dimensional trace

space, which is a modified version of the usual 6D phase space. The matrices

for different types of magnets represent transformations upon this space, and

are calculated by casting the single-particle equations of motion into curvilinear

coordinates referenced to the design trajectory of the beam, and then linearizing

them. Much of the traditional language of accelerator physics derives from this

approach. Consequently, in the present chapter, we will present in detail the

linear theory of beam optics. Additionally, higher-order (i.e. 2nd, 3rd, etc)

tensors, which operate upon the same 6D space as the linear matrices, may be

used to describe nonlinear effects. As the primary nonlinear effects relevant to

the beam-shaping mechanism outlined in Section 1.5.2 are of second order, we

conclude the chapter with an overview of the theory of second-order beam optics.
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2.1 Background and Notation

2.1.1 The Curvilinear Coordinate System

Since the manipulation of particle beams is accomplished primarily by the use

of static magnetic fields, the beam dynamics are governed by the single particle

equations of motion in a magnetic field B:

dp

dt
=
q

c
v×B(r) ;

dU

dt
= 0 (2.1)

Here, p = γmv is the relativistic momentum, v is the particle velocity, and

U = γmc2 is the energy. The trajectories r(t) of particles in the field B evolve

according to Eqs. (2.1). Presumably, one of these trajectories corresponds to

the the design particle, whose path r0(t) represents the design trajectory that the

beam is intended to follow. It is customary then to define a set of basis vectors

attached to a reference frame moving along the design trajectory and to specify

the coordinates of particles in the beam relative to this basis. Let us parametrize

r0 by the arclength parameter s,

s = s(t) =

∫ t

t0

|v0(τ)| dτ (2.2)

The basis vectors of the coordinate system attached to the design particle are

then defined by the Serret-Frenet equations [50]

ẑ ≡ dr0/ ds

|dr0/ ds|
; x̂ ≡ −k

k
; ŷ ≡ ẑ× x̂ (2.3)

where k is the curvature vector. Its definition in terms of the reference trajectory

and its relationship to the radius of curvature of the design trajectory R(s) are

given by the following relations:

k ≡ dẑ

ds
; R(s) ≡ 1

k
=

p0c

qB0(s)
(2.4)

50



Figure 2.1: The curvilinear coordinate system.

Here q and p0 are the charge and momentum of the design particle and B0

is the y-component of the magnetic field along the design trajectory. We will

permit R (and k) to assume both positive and negative values, according to the

relative signs of q and B0 in Eq. (2.4). Doing so prevents the coordinate axes, as

they are defined in Eq. (2.3), from flipping about the x-z plane in the event that

k changes sign (as would happen if the direction of the vertical component of the

magnetic field were reversed). The vector position r of a given particle relative

to a fixed coordinate system may now be written:

r(s) = r0(s) + δr(s) (2.5)

where δr represents the test particle’s deviation from the position of the design

particle, which in the curvilinear coordinates defined by Equation(2.4) may be

written

δr(s) = x x̂ + y ŷ + z ẑ (2.6)

Here (x, y, z) denote the deviations along the directions of the unit vectors of

the test particle position from that of the design particle. These coordinates (and
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the unit vectors themselves) are functions of the arclength parameter s, which

represents the length traversed by the design particle along the design trajectory

(as such it is effectively a temporal parameter). Defining the momenta

p ≡ γmṙ ; p0 ≡ γmṙ0 ; δp ≡ γmδ̇r (2.7)

we see that Eq. (2.5) implies that the momentum deviation of the test particle

from that of the design particle is given by

δp = p− p0. (2.8)

However, in the coordinates of Eq. (2.4) the design momentum has only a z-

component (p0 = p0ẑ). Hence, Eq. (2.8) reads

δp = pxx̂ + pyŷ + δpzẑ. (2.9)

2.1.2 General Equations of Motion

The next step is to obtain from Eq. (2.1) the general equations of motion in

the curvilinear coordinate system defined in Section 2.1.1. From Eqs. (2.3-2.4)

we have (assuming that the design trajectory lies in a plane normal to the y-

direction),

˙̂x = ṡkẑ ; ˙̂y = 0 ; ˙̂z = −ṡkx̂

ẋ = ṡx′ ; ẏ = ṡy′ ; ż = ṡz′ (2.10)

ṙ0 = ṡẑ

Here superscript dots denote time derivatives and ṡ = v0 is the velocity of the

design particle. Using these identities, we find that

r = r0(s) + x x̂ + y ŷ + z ẑ;

v = v0 (x′ − zk) x̂ + v0y
′ŷ + v0(z

′ + x k + 1)ẑ; (2.11)

ṗ = γm (v̇xx̂ + v̇yŷ + v̇zẑ) ;
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where

v̇x = v2
0

(
x′′ − zk′ − 2z′k − x k2 − k

)
,

v̇y = v2
0y
′′, (2.12)

v̇z = v2
0

(
z′′ + xk′ + 2x′k − zk2

)
.

Combining (2.13) with the first of Eqs. (2.1), which may be cast into the form

v̇x =
q

γmc
(Bzvy −Byvz);

v̇y =
q

γmc
(Bxvz −Bzvx); (2.13)

v̇z =
q

γmc
(Byvx −Bxvy);

we obtain the following general equations of motion:

x′′ − zk′ − 2z′k − x k2 − k =
q

γmcv0

{Bzy
′ −By (z′ + x k + 1)} ;

y′′ =
q

γmcv0

{Bx (z′ + x k + 1)−Bz (x′ − zk)} ; (2.14)

z′′ + xk′ + 2x′k − zk2 =
q

γmcv0

{By (x′ − zk)−Bxy
′} .

Keep in mind that the field components Bx, By, Bz are evaluated at the

position of the particle, and are therefore functions of x, y, z, and s. These

equations of motion are quite general, the only inherent assumptions being: (i)

that the field components are static and obey the symmetries (see Section 1.2.2)

necessary to restrict the design trajectory to a plane, (ii) that the electron does

not radiate energy, and (iii) that the interparticle interactions are negligible.

2.1.3 The Momentum Deviation

It is customary in beam physics to represent the longitudinal velocity in terms of

the momentum deviation δ = δpz/p0 rather than z′. Using Eqs. (2.8) and (2.12)
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we can write

δ =
δpz
p0

=
γ

γ0

(z′ + xk + 1)− 1 (2.15)

The presence of momentum error introduces a difference in total integrated path-

length (as opposed to z, the difference in instantaneous longitudinal position)

between the test particle and the design particle, due to different radii of curva-

ture in bends. To illuminate this mathematically, define the function S(p) to be

the path-length traversed by a particle of momentum p during the time that the

design particle travels from s0 to s. The vector element dS may then be written

dS = v dt = (vxx̂ + vyŷ + vzẑ)dt (2.16)

Inserting for the components of v from Eq. (2.12), we find that the integrated

path-length difference during the time t = s/v0 that the design particle travels a

distance s is

S(p)− S(p0) =

∫ s

0

[
√

(x′ − zk)2 + y′2 + (z′ + kx+ 1)2 − 1]ds (2.17)

where we have used the fact that dt = ds/v0. This difference in distance trav-

eled is due entirely to the disparity in velocity of the two particles, so we can

additionally write

S(p)− S(p0) =
δv

v0

s. (2.18)

If we set z = z′ = 0 in Eq. (2.17), the resulting integral measures the path-length

along the test particle trajectory up to the point where it intersects the x − y

plane of the curvilinear coordinate system at time t = s/v0. Let us call this

integral Ŝ(p) and write

Ŝ(p) ≡ S(p)|z,z′→0 =

∫ s

0

√
x′2 + y′2 + (kx+ 1)2ds (2.19)

The difference in path-length between the two trajectories up to the point s is

then

ζ(p) ≡ Ŝ(p)− Ŝ(p0) =

∫ s

0

[
√
x′2 + y′2 + (kx+ 1)2 − 1]ds (2.20)
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The difference between S(p) − S(p0) and ζ(p) is approximately equal to the

longitudinal displacement ∆z of the test particle. To see this, note that the delay

in arrival time at point s between the test particle and the design particle is given

by:

∆t =
Ŝ(p)

v
− Ŝ(p0)

v0

. (2.21)

Expanding the right-hand side in powers of δv/v0 we obtain

v0∆t = ζ − (s+ ζ)
δv

v0

+ (s+ ζ)

(
δv

v0

)2

+ . . . (2.22)

Noting that the time delay times v0 is the negative of the longitudinal displace-

ment ∆z ≡ z − ◦
z and invoking Eq. (2.18), we have, to first order in combined

powers of ζ and δv, that

∆z ≈ δv

v0

− ζ(p). (2.23)

To first order, the velocity is dominated by the longitudinal component, v ≈

vz, so the expression for ζ(p) from Eq. (2.20) becomes

ζ(p) ≈
∫ s

0

kx ds. (2.24)

The variable ζ(p) represents the difference in path-length between the off-momentum

particle and the design particle due to the transverse displacement x of the parti-

cle, which is also the distance by which its radius of curvature varies locally from

that of the design particle. The variable ∆z represents the change in longitudinal

displacement of the particle relative to the position of the design particle. Here,

we give a name to the quantity ζ because some references (see Ref. [51]) refer

to ζ as the longitudinal coordinate instead of z (Carey refers to this variable as

l). This is justified by noting that in the ultrarelativistic limit, in which case the

velocities of both particles are approximately equal to c and so δv/v0 → 0. In

this case, we have that ζ = −∆z as β → 1.
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2.1.4 Vector and Tensor (Transport) Notation

Let x be a 6-element vector representing the coordinates of a test particle in the

curvilinear basis of Section 2.1.1:

x(s) =



x(s)

x′(s)

y(s)

y′(s)

z(s)

δ


(2.25)

Here x, y, and z are the transverse coordinates of a particle relative to the

curvilinear coordinate system following the path of the design particle and δ is the

fractional longitudinal momentum deviation. The primes denote differentiation

with respect to s. The 6-D space in which the vector x operates we call trace

space. Let the following denote the trace space vectors of a test particle at two

points (s0 and s) along the design trajectory:

◦
x = x(s0) ; x = x(s) (2.26)

The two states are presumed to be related by some transformation
◦
x → x. The

nature of this transformation depends upon the configuration of magnetic lenses,

bends, and drifts encountered by the particle as it moves from s0 to s. Assuming

that the coordinates represent small perturbations from the design orbit, the final

state may be represented to arbitrary precision by taking higher order terms in

an expansion in powers of the vector components of the initial state:

xi = Qi +Rij
◦
xj + Tijk

◦
xj

◦
xk + Uijkl

◦
xj

◦
xk

◦
xl + . . . (2.27)

Note that in Eq. (2.27) there is an implied summation on repeated indices. The

transformation from the initial to final state is executed, therefore, by a sequence
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of tensors Q, R, T , U , . . . of increasing rank which operate upon the initial state
◦
x. These tensors may be defined in component form as follows:

Qi = xi|◦x→0

Rij =
∂xi

∂
◦
xj

∣∣∣∣∣◦
x→0

Tijl =
1

2

∂2xi

∂
◦
xj∂

◦
xk

∣∣∣∣∣◦
x→0

(2.28)

Uijkl =
1

6

∂3xi

∂
◦
xj∂

◦
xk∂

◦
xl

∣∣∣∣∣◦
x→0

Note that the zeroth-order vector Qi is typically set to zero, as the origin

of the curvilinear system generally lies on the design orbit by definition. The

components of the first and higher-order tensors are obtained by expanding the

equations of motion (2.14) of an arbitrary particle traveling near the design or-

bit. The 6-vector notation and the corresponding transport matrix formalism

was originally developed for use in the particle tracking code TRANSPORT [52].

It has more recently been implemented in the code ELEGANT [53], which will be

used extensively in this dissertation. The transport matrix notation has become

widely used in the accelerator community as a means of calculating first (and

sometimes higher) order analytical expressions for the effects of various configu-

rations of magnets and drifts on the beam dynamics. In order to calculate the

elements of the lowest order transformation Rij, it is first necessary to linearize

the general equations of motion (2.14) by expanding the static magnetic field B in

powers of the transverse coordinates (and then eliminating the nonlinear contri-

butions). The resulting expansion of the magnetic field into so-called multipoles

is the topic of the following section.
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2.2 Multipole Expansion of the Magnetic Field

In order to obtain explicit analytical forms for the elements of the 6×6 transport

matrix R discussed in the previous section, we must linearize the general single-

particle equations of motion (2.14). This requires expanding the magnetic field

components in powers of the transverse coordinates. The contribution to the

magnetic field from products of transverse coordinates of order n is termed the

n’th magnetic multipole.

2.2.1 Series Expansions of Some Parameters

Before we linearize the single-particle equations of motion in a static magnetic

field, we present some important expansions of the system parameters. We will

assume that the velocity is dominated by the longitudinal component, and hence

v ≈ vz. The Lorentz gamma is then given by

γ ≈ 1√
1− v2

z/c
2

(2.29)

where, in accordiance with Eq. (2.12), the longitudinal velocity is vz = v0(z
′ +

xk + 1). Expanding γ0/γ in powers of the coordinates gives us

γ0

γ
≈ vz
v0

p0

p
= (z′ + xk + 1)(1− δ + δ2 − δ3 + . . .) (2.30)

A similar expansion may be performed upon the velocity deviation δv in powers

of the fractional momentum deviation δ:

δv

v0

=
δ

γ2
0

− 3

2

β2
0

γ2
0

δ2 +
1

2
(β2

0 − 6β4
0 + 5β6

0)δ
3 + . . . (2.31)

The utility of these expansions will become apparent when we linearize the single

particle equations of motion in Section 2.3.1.
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2.2.2 The General Field Expansion

In the current-free region of a magnetic element on a beamline, through which

the beam is intended to pass, the magnetic field may be represented by a scalar

potential ψ:

B = −∇∇∇ψ (2.32)

The divergencelessness of the magnetic field then requires that ψ satisfy the

Laplace equation

∇2ψ = 0 (2.33)

The transverse plane of the curvilinear coordinate system attached to the

design particle will (for some value of s along the design trajectory) intersect any

given fixed point r which we may wish to consider. The potential may therefore

be represented by a function of the coordinates x, y, and s:

ψ = ψ(x, y, s) (2.34)

With respect to these coordinates, the gradient and the Laplacian take the forms

∇∇∇ =
∂

∂x
x̂ +

∂

∂y
ŷ +

1

1 + kx

∂

∂s
ẑ ; (2.35)

∇2 =

(
1

1 + kx

∂

∂x

)2

+
∂2

∂y2
+

(
1

1 + kx

∂

∂s

)2

; (2.36)

Expanding ψ in powers of x and y gives us

ψ(x, y, s) =
∞∑

m, ` = 0

Am,`(s)
x`ym

`!m!
(2.37)

Substitution of Eq. (2.37) into the Laplace equation results in the following

recursion relation among the coefficients [52]

Am+2,` + A′′m,` + `kA′′m,`−1 − `k′A′m,`−1 + Am,`+2 + (3`+ 1)kAm,`+1

+ `(3`− 1)k2Am,` + `(`− 1)2k3Am,`−1 + 3`kAm+2,`−1 (2.38)

+ 3`(`− 1)k2Am+2,`−2 + `(`− 1)(`− 2)k3Am+2,`−3 = 0
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These recurrence relations effectively eliminate the dependence of the field coef-

ficients on the mode number m. Applying the gradient operator to ψ we obtain

the magnetic field components

Bx =
∞∑

m, ` = 0

Am,`(s)
x`−1ym

(`− 1)!m!
;

By =
∞∑

m, ` = 0

Am,`(s)
x`ym−1

`!(m− 1)!
; (2.39)

Bz =
∞∑

m, ` = 0

A′m,`(s)

1 + k(s)x

x`ym

`!m!
;

2.2.3 Extraction of the Multipole Moments

The requirement that the reference plane of the design trajectory be normal to

the direction of y forces ψ to be an odd function of y: ψ(x, y, s) = −ψ(x,−y, s).

If this condition were not satisfied, the design particle could not be constrained

to lie in the plane y = 0, because B would have a nonzero component tangential

to this plane. In the interest of this symmetry consideration, we therefore require

that the coefficients for even values of m vanish

Am,` = 0 ; m = 0, 2, 4, 6, ... (2.40)

The eliminated terms in the series corresponding to even m are called “skew”

terms. Their failure to vanish would violate the symmetry rule imposed above on

the magnetic potential, and would permit coupling of the x and y phase planes

and deviation of the design trajectory from the y = 0 plane. Using (2.38) and

(2.40), all coefficients may be expressed solely in terms of those with m = 1:

A30 = −kA11 − A12 − A′′10;

A31 = k2A11 − kA12 − A13 + k′A′10 + 2kA′′10 − A′′11; (2.41)

...
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We can classify the terms in the field expansion of B by the combined powers of

the transverse coordinates which we shall call n. We see from (2.39) that for the

x and y components, n = `+m− 1, while for the z-component, n = `+m. We

can then write

Bx =
∞∑

n = 0

Bx,n ; By =
∞∑

n = 0

By,n ; Bz =
∞∑

n = 0

Bz,n (2.42)

where we define

Bx,n =
∑
Q

Am,`(s)
x`−1ym

(`− 1)!m!
; Q = {m, ` : n = (`− 1) +m} (2.43)

By,n =
∑
Q

Am,`(s)
x`ym−1

`!(m− 1)!
; Q = {m, ` : n = `+ (m− 1)} (2.44)

Bz,n =
∑
Q

A′m,`(s)

1 + k(s)x

x`ym

`!m!
; Q = {m, ` : n = `+m} (2.45)

The total field contribution from terms of order n,

Bn = Bx,nx̂ +By,nŷ +Bz,nẑ (2.46)

is called the nth magnetic multipole field. Using (2.41) to eliminate the coeffi-

cients Am,` with m 6= 1, the kth contribution to the field can be written solely in

terms of the coefficients A1,`, which we rename

a`(s) ≡ A1,` =

(
∂

∂x

)`
∂ψ

∂y

∣∣∣∣∣
x=y=0

(2.47)

The first few multipole contributions to the magnetic field are then given by

B0 = a0ŷ (dipole)

B1 = a1yx̂ + a1xŷ + a′0 yẑ (quadrupole)

B2 = a2xyx̂ + 1
2
a2 (x2 − y2) ŷ + (a′1 − ka′0)xy ẑ (sextupole)

(2.48)

The “multipoles” derived here are to be distinguished from the usual multipole

fields discussed in electrodynamics textbooks, which are obtained by regarding
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all current sources as being near the origin and representing the field at a point

far away by expanding in powers of 1/r, where r is the radial distance from the

origin. In the present analysis, the field expansion is performed in the smallness

of the coordinates, and therefore represents the limit where the current sources

producing the field are located away from the origin. Evaluating the vertical (y)

component of the total field (B = B1 + B2 + B3 + . . .) at the midplane (y = 0)

gives

By(y = 0) = a0 + a1x+
1

2
a2x

2 +
1

6
a3x

3 + ... (2.49)

The coefficients of this expansion (i.e. a`) are determined by the physical

parameters of the magnetic element which produces the field. The names given

to these coefficients vary. Equation (2.49) may alternately be written

By(y = 0) = B0

(
1− nkx+ βk2x2 + γk3x3 + ...

)
(2.50)

or

By(y = 0) = B0R
(
k +K1x+K2x

2 +K3x
3 + ...

)
(2.51)

The first form of the expansion is convenient because the coefficients (n, β, γ, ...)

are dimensionless, having been normalized to the local radius of curvature R =

1/k. However, when considering field configurations that do not possess a dipole

component, the curvature radius becomes infinite. In deriving the equations

of motion using the general expansion of B, it is then desirable to rewrite the

coefficients in the form of (2.51) before taking the limit k → 0.
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2.3 Beam Optics

2.3.1 Linearized Equations of Motion

If we assume that the deviation of the particle from the design trajectory is small,

then we can expand the equations of motion in the smallness of the coordinates

x, y, and z. If we keep only the terms linear in these coordinates (and their

derivatives), we obtain a lowest-order representation of the motion. An expansion

of this sort was performed upon the magnetic field B in Section 2.2.3. Retaining

only the linear (dipole+quadrupole) terms in this expansion we have

Bx = −B0kny , By = B0(1− nkx) , Bz = B′
0y. (2.52)

The local dipole field B0 is related to the curvature k by the inverse of the

formula for the cyclotron radius applied at the local position of the design particle

k =
qB0

γ0mcv0

, k′ =
qB′

0

γ0mcv0

. (2.53)

Now the equations of motion (2.14) read

x′′ − 2z′k − x k2 − k =
γ0

γ
{k′yy′ − k(1− nkx) (z′ + x k + 1)} , (2.54)

y′′ = −γ0

γ

{
nk2y (z′ + x k + 1) + k′y (x′ − zk)

}
, (2.55)

z′′ + xk′ + 2x′k − zk2 = k
γ0

γ
{(1− nkx) (x′ − zk) + nkyy′} . (2.56)

Using expansion (2.30) for γ/γ0 in powers of (z′ + kx) and δ, keeping only terms

linear in the coordinates, we obtain

x′′ + k2(1− n)x = kδ,

y′′ + k2ny = 0, (2.57)

z′′ + kx′ + xk′ = 0.

These equations describe oscillatory motion in x and y, with an added horizontal

dispersion due to the momentum deviation δ.

63



2.3.2 Linear Transverse Solutions

The linearized transverse equations of motion have the general forms

x′′ +K2
x(s)x = kδ , y′′ +K2

y (s)y = 0 (2.58)

where

K2
x(s) = k(s)2[1− n(s)] , K2

y (s) = k(s)2n(s) . (2.59)

In the absence of momentum dispersion (δ=0) both equations are homoge-

neous differential equations of Hill’s type, which resemble the equations for a

simple harmonic oscillator that is uncoupled in x and y, but with separate s-

dependent frequencies Kx,y. The homogneous solutions are generally oscillatory

and periodic in nature. These oscillatory solutions, called betatron oscillations

have the forms

x̃(s) = Cx(s)
◦
x+ Sx(s)

◦
x
′
, ỹ(s) = Cy(s)

◦
y + Sy(s)

◦
y
′

(2.60)

where
◦
x = x (s0),

◦
x′= x′(s0),

◦
y = y(s0), and

◦
y′= y′(s0). The C and S functions are

called “cosine-like” and “sine-like.” In the absence of any field imperfections, the

linear motion in y is completely described by the betatron solution. The complete

solution for motion in x is the sum of the homogeneous solution in (2.60) and

a particular solution ηx(s)δ, where ηx is the solution to the first of (2.58) with

δ = 1:

η′′x +K2
x(s)ηx = k. (dispersion function) (2.61)

The complete solutions may then be written

x(s) = x̃(s) + ηx(s)δ ; y(s) = ỹ(s) . (2.62)

The function ηx(s) is called the horizontal dispersion function. It represents the

trajectory followed by an off-momentum particle with unit momentum error that
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is initially coincident with the design particle. Equations (2.62) do not include a

vertical dispersion function ηy(s) due to the assumption that the design trajectory

lies in a plane normal to the y direction. Vertical dispersion may be introduced

however in the case of systems with bending in the vertical plane.

2.3.3 Linear Longitudinal Solutions

The third of Eqs. (2.57) is merely a statment of conservation of longitudinal

momentum. Multiplying through by ds, it reads

dz + (1 + xk)ds = vzdt . (2.63)

Integrating and using dt = ds/v0, we obtain

z − ◦
z =

∫ s

s0

{
δvz
v0

− kx

}
ds . (2.64)

If we now insert for x the linear solution from Eq. (2.62) and expand δvz/v0 to

lowest order in δ according to Eq. (2.31), we obtain the expression

z =
◦
z + Cz

◦
x+ Sz

◦
x
′
+ ηzδ (2.65)

where we have defined the functions

Cz ≡ −
∫ s

s0

kCxds , (2.66)

Sz ≡ −
∫ s

s0

kSxds , (2.67)

ηz ≡ (s− s0)

{
1

γ2
0

− αc

}
. (2.68)

The factor αc which appears in the longitudinal dispersion term is called the

“momentum compaction”:

αc(s) =
1

s− s0

∫ s

s0

k(s)ηx(s)ds . (2.69)
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The function ηz, called the longitudinal dispersion, represents the propor-

tionality between the longitudinal momentum deviation δp and the change in the

longitudinal position of the test particle over the interval from s0 to s. The expres-

sion for αc given in Eq. (2.69) is a first-order approximation to the path-length

compression in bends defined in Eq. (2.20):

ζ(p) ' (s− s0) αc
δpz
p0

. (2.70)

Comparing this with the terms in a Taylor expansion of ζ(p) in powers of the

momentum deviation,

ζ(p) =
∂ζ

∂pz
δpz +

1

2

∂2ζ

∂p2
z

δp2
z + ... (2.71)

we see that (2.70) is merely the first term in the Taylor series. We can therefore

make (to lowest order in the momentum deviation) the following association:

αc '
∂ζ

∂pz

p0

s− s0

. (2.72)

This expression illuminates why αc is called the momentum compaction. It

is a dimensionless quanity representing the change in pathlength in a bend ∂ζ

per unit of longitudinal momentum error ∂pz, normalized to the design particle’s

path-length-to-momentum ratio over the same interval. From Eq. (2.68) we see

that there is a particular design energy, γ0= α
−1/2
c , at which the longitudinal

dispersion vanishes. We call this value the “transition energy” and denote it by

γt ≡
1
√
αc
. (transition energy) (2.73)

The concept of transition energy relates two competing effects: the longer

(shorter) total path-length versus the larger (smaller) velocity of a test particle

with a positive (negative) momentum dispersion. When the design energy γ0

is above the transition energy, particles with a positive momentum deviation
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(i.e. with a momentum greater than the design momentum) take longer to pass

through the system and lag behind the design particle. When the design energy is

below transition, these particles pass through the system more quickly and move

ahead of the design particle. These statements may be summarized as follows:

δ > 0 δ < 0

−−−− −−−−

γ0 < γt ∆z ≤ 0 ∆z > 0 (below transition)

γ0 > γt ∆z > 0 ∆z ≤ 0 (above transition)

γ0 = γt ∆z = 0 ∆z = 0 (at transition)

(2.74)

Here ∆z = z -
◦
z, and the less than and greater than signs are approximate because

we are neglecting the contributions from Cz and Sz.

2.3.4 The Transport Matrix R

To linear order in the coordinates of the initial state, the tensor expansion of

Section 2.1.4 reads x = Q+R
◦
x. The lowest order tensor Q is a 6-element vector

representing any offset of the beam centroid. If the centroid is assumed to adhere

properly to the design trajectory, then Q may be set to zero. In this case, to

lowest nonvanishing order, the transformation is a simple matrix multiplication:

.

x = R
◦
x (2.75)

Typically, the section of beamline extending from s0 to s may be broken down

into a set of N finite components whose individual transport matrices Rn may

be calculated separately. The combined transport matrix R is then produced by

multiplying together the individual matrices:

R = RN . . .R3 R2 R1 (2.76)
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The matrix R is the Jacobian of a transformation under linear forces. The lin-

earized system it represents has a time-independent Hamiltonian so the phase

space area is preserved and its Jacobian has unit determinant. Hence, we can

write

det(R) = 1. (2.77)

The components of the matrix R for a particular section of the beamline are

obtained by linearizing the equations of motion of an arbitrary particle traveling

near the design orbit. This linearization, performed in Sections 2.3.2 and 2.3.3,

gives an R of the form

R(s) =



Cx(s) Sx(s) 0 0 0 ηx(s)

C ′x(s) S ′x(s) 0 0 0 η′x(s)

0 0 Cy(s) Sy(s) 0 0

0 0 C ′y(s) S ′y(s) 0 0

Cz(s) Sz(s) 0 0 1 ηz(s)

0 0 0 0 0 1


(2.78)

It is straightforward to obtain the explicit expressions for the various matrix

elements for simple beamline components (i.e.where n and k are constants) di-

rectly from Eqs. (2.57). The case of a drift corresponds to k = n = 0. That of

a dipole to n = 0. And for a simple quadrupole field, the dispersion term kδ is

omitted. Matrix elements for a drift, a quadrupole magnet, a dipole magnet, and

a thin lens thereby obtained are displayed in Table 2.1.

In the case of the quadrupole magnet, due to the fact that the transverse

equations of motion differ by a minus sign in front of the linear force term,

focusing only occurs in one transverse direction or the other. If n > 0 then

the magnet is vertically focusing and horizontally defocusing. If n < 0 then

the magnet is horizontally focusing and vertically defocusing. The quadrupole
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Table 2.1: Matrix Elements for Common Beamline Components

Element Name Drift Quad Dipole Thin Lens

R11 Cx(s) 1 cosh[k
√
ns] cos(ks) 1

R12 Sx(s) s 1
k
√
n

sinh[k
√
ns] 1

k
sin(ks) 0

R21 C ′x(s) 0 k
√
n sinh[k

√
ns] −k sin(ks) −1/f

R22 S ′x(s) 1 cosh[k
√
ns] cos(ks) 1

R33 Cy(s) 1 cos[k
√
ns] 1 1

R34 Sy(s) s 1
k
√
n

sin[k
√
ns] s 0

R43 C ′y(s) 0 −k
√
n sin[k

√
ns] 0 1/f

R44 S ′y(s) 1 cos[k
√
ns] 1 1

R16 ηx(s) 0 0 1−cos(ks)
k

0

R26 η′x(s) 0 0 sin(ks) 0

R51 Cz(s) 0 0 − sin(ks) 0

R55 Sz(s) 0 0 cos(ks)−1
k

0

R56 ηz(s)
s
γ2
0

s
γ2
0

{ s
γ2
0
− s+ sin(ks)

k
} 1
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matrix elements in Table 2.1 are correct for both cases. If n < 0, then
√
n is pure

imaginary and the hyperbolic and sinusoidal functions effectively trade places by

virtue of the identities cosh(iz) = cos(z) and sinh(iz) = i sin(z). There is also a

corresponding change in sign in the focusing terms Cx and Cy.

Since the quadrupole produces no bending, the radius of curvature is infinite

and hence k → 0. The fact that Eqs. (2.57) contain factors of k2 is an artifact

of the form of the expansion in Eq. (2.50) used for the field. Consequently, the

dimensionless quantity n should be regarded as having an effective 1/k2 depen-

dence so that in the limit k → 0, the quantity k2n does not vanish but kn does.

The case of the thin lens is obtained by expanding the quadrupole elements to

lowest order in s with the association k2ns = 1/f . The quantity f is thus the

focal length of the thin lens and 1/(k2ns) is the approximate effective focal length

of a quadrupole of length s.

2.3.5 Second Moments of the Beam Distribution

In Section 1.1 we defined a beam distribution function F (δr, δp) over the coor-

dinates (x, y, z, δpx, δpy, δpz) relative to the beam centroid, and used this distru-

bution to obtain second moments and to define the normalized emittances. If

we express the beam distribution instead in the trace space coordinates of the

6-vector x defined in Eq. (2.25), we can then use it to obtain a 6 × 6 matrix

of second moments whose evolution (to linear order) is given by way of a sim-

ple matrix multiplication with the transport matrix R. Let this new distribution

function be denoted f(x, s). If the beam is properly centered about its design

position and momentum then the first moments vanish:

〈xj〉 =

∫
xif(x, s)d6x = 0. (2.79)
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We can define a 6× 6 matrix Σ of second moments of the distribution:

Σij(s) =

∫
xjxkf(x, s)d6x = 〈xjxk〉. (2.80)

By Liouville’s theorem, a distribution function, when followed under the equa-

tions of motion generated by a Hamiltonian, is invariant. Hence, the value of the

distribution function at point x when the design particle is at s may be obtained

from an earlier known functional form of the distribution, when the design par-

ticle was at s0, by evaluating it at the point
◦
x, which is the inverse of a linear

transformation of the form in Eq. (2.75). That is,

f(x, s) = f(
◦
x, s0), where x = R

◦
x or

◦
x = R−1x. (2.81)

Due to the fact that the transport matrix has unit determinant [Eq. (2.77)] we

can write

d6x = det(R) d6 ◦x = d6 ◦x. (2.82)

Using Eqs. (2.81) and (2.82), Eq. (2.80) becomes

Σjk =

∫
Rij

◦
xi Rkl

◦
xlf(

◦
x, s0) d

6 ◦x. (2.83)

Defining the beam matrix at the earlier position s0 by

◦
Σ ≡

∫
◦
xj

◦
xk f(

◦
x, s0) d

6 ◦x, (2.84)

we see that Eq. (2.83) is the component form of the following matrix relationship

between the sigma matrices at the two points on the beamline:

Σ = R
◦
Σ RT . (2.85)

The off-diagonal elements of the Σ matrix are symmetric under an exchange

of indices: Σij = Σji. This is clearly seen by interchanging xi and xj in Eq. (2.80)

and observing that the integral is unaltered. The diagonal elements represent the
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variances in each of the 6 trace space coordinates. Taking their square roots then

gives us the RMS values for each of these quantities. We typically denote these

as follows:

σxj
≡
√

Σjj =
√〈

x2
j

〉
, (2.86)

where the index j takes the values {1,2,3,4,5,6} corresponding to the trace space

coodinates (x, x′, y, y′, z, δ). Because of their application to the examination of

the transverse dynamics, it is also customary to define the following transverse

submatrices:

Σx ≡

 Σ11 Σ12

Σ21 Σ22

 ; Σy ≡

 Σ33 Σ34

Σ43 Σ44

 (2.87)

and the corresponding 2× 2 transport matrices

Mx ≡

 R11 R12

R21 R22

 ; My ≡

 R33 R34

R43 R44

 . (2.88)

The transverse RMS emittances are then defined by

εx ≡
√

det Σx ; εy ≡
√

det Σy (2.89)

These quantites measure the areas occupied by the beam’s distributions in

the transverse trace space. They can be connected to the normalized emittances

εx,N , εy,N previously defined in Eqs. (1.8) and (1.9) by noting that δpx = γ0mv0x
′

and δpy = γ0mv0y
′. Hence,

εx,N = γ0β0εx , εy,N = γ0β0εy . (2.90)

Under a linear matrix transformation R which has no dispersion terms ηx =

η′x = 0, the RMS emittances as defined defined by Eq. (2.89) are invariant. The
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presence of dispersion and/or nonlinear effects, however, will tend to produce

emittance growth. The contribution to the emittance from the linear dispersion

can be seen by transporting the matrix of second moments according to Eq. (2.85)

and then calculating the emittances εx,0 and εx,f before and after respectively.

Because the y (vertical) elements of the matrices do not contribute to the final

result for x, we can write the matrix transport in an abbreviated 3× 3 form

=

Σx =

 Mx ddd

0 1

 ◦
Σx 0

0 σ2
δ

 Mx ddd

0 1

T

(2.91)

where ddd is the dispersion vector

ddd =

 ηx

η′x

 (2.92)

and σδ=
√

Σ66 is the rms momentum spread. Evaluating Eq. (2.91) gives

=

Σx =

 Σx dddσ2
δ

dddTσ2
δ σ2

δ

 , where Σx ≡Mx

◦
ΣxM

T
x + σ2

δ dddddd
T . (2.93)

The final rms emittance is then obtained by taking the determinant of the upper

left 2× 2 portion of the matrix. This gives

εx,f =
√

det Σx =

{
det

[
Mx

◦
ΣxM

T
x + σ2

δdddddd
T

]}1/2

(2.94)

In the case where the dispersion is zero (ddd = 0) the above reduces, by utilizing

the identity det(AB) = det(A) det(B) and the fact that the transport matrix Mx

has unit determinant, to the expression for the initial emittance:

εx,f =

(
det

◦
Σx

)1/2

= εx,0 ; (ddd→ 0) (2.95)

It should be noted that the equality is valid only to linear order, and to the extent

that space charge effects on the emittance growth can be neglected.
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2.3.6 Betatron Motion

The betatron motion was the name given earlier to the homogeneous parts (x̃,

ỹ) of the solutions to the linear transverse equations of motion, which satisfy

differential equations of the type:

µ′′ +K2
µ(s)µ = 0 ; (2.96)

where µ stands for either x̃ or ỹ. For a periodic function Kµ(s), this equation

is of Hill’s type. However, even if the system under investigation is not periodic

but is of finite length, the periodic Hill’s solution is still useful as a means of

reparametrizing the equations of motion. In terms of 2 × 2 transport matrices

the betatron solutions satisfy the transport relation

χχχµ = Mµ
◦
χχχµ, (2.97)

where we have defined the 2-vector χχχµ = (µ, µ′). An alternate parametrization

of the solution to this equation, originally proposed by Courant and Snyder [54],

gives rise to much of the traditional terminology of beam optics. Periodic solu-

tions to Hill’s equation may be written as cosine functions with an s-dependent

phase and amplitude:

µ = wµ(s) cos [ψµ(s) + φµ] . (2.98)

Substitution of Eq. (2.98) into (2.96) produces a pair of differential equations for

wµ and ψµ, (
w′′µ +K2

µwµ
)

=
e2µ
w3
µ

(2.99)

ψ′µ =
eµ
w2
µ

(2.100)

where eµ is a constant of integration called the Courant-Snyder invariant. Using

the amplitude function wµ, we can define the following parameters of the test
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particle:

βµ ≡
w2
µ

eµ
; αµ ≡ −1

2
β′µ ; γµ ≡

1 + α2
µ

βµ
. (2.101)

The parameters αµ, βµ, γµ are referred to as Twiss parameters, after R. Q.

Twiss [55]. For reasons which will become clear later, let us also define a matrix

of these parameters

Wµ ≡ eµ

 βµ −αµ

−αµ γµ

 . (2.102)

Utilizing the definitions above and various matrix identities, it is straightforward

to show that Wµ satisfies the following matrix equations:

det (Wµ) = e2µ , (2.103)

χχχTµW
−1
µ χχχµ,= 1 (2.104)

Wµ = Mµ

◦
W µM

T
µ . (2.105)

Equation (2.103) follows directly from the third of Eqs. (2.101). Equation (2.104)

may be verified by combining (2.98) with (2.101) and employing various trigono-

metric identities. Equation (2.105) then follows from (2.104) and (2.97), with use

of the identity (ABAT )−1 = (AT )−1B−1A−1.

Since eµ is a constant, Eq. (2.103) represents an invariance relationship be-

tween the elements of the W matrix. The second equation describes an ellipse

of area πeµ in the phase plane of µ and µ′. We can see this more clearly by

multiplying out the matrices and writing it in the form,

γµµ
2 + 2αµµµ

′ + βµµ
′2 = eµ . (2.106)

We conclude that the betatron motion is represented by an elliptical trajectory

in the transverse trace space plane. There are an infinite number of such trajec-

tories, which describe at a given point s along the beamline a set of concentric
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Figure 2.2: Trace space ellipses for (a) three trajectories with differ-
ent invariants and (b) three trajectories with the same invariant but
different momenta.

ellipses. All of these ellipses have the same Twiss parameters but vary according

to the areas which they enclose in the trace space plane of µ and µ′. This is illus-

trated in Fig. 2.2(a) which shows three ellipses in the (x, x′) plane with the same

Twiss parameters (αx, βx, γx) but with different values of the Courant-Snyder in-

variant ex. Consequently γµ, αµ, βµ are functions of s which are determined by

the curvature function Kµ(s) of the lattice and by their initial values. It should

also be noted that since γµ, αµ, βµ are all functions of s, the orientation of the

trace space ellipse upon which a particle’s betatron motion is constrained to lie

changes as the particle travels through the lattice. However, the area πeµ of this

ellipse does not change.

Recall that the horizontal dispersion function ηx(s) describes the trajectory

of an off-energy particle having unit momentum error and initially coincident

with the design particle. A particle that is initially displaced from the design

trajectory and having the arbitrary momentum error δ will then execute betatron

oscillations about this trajectory.
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Consequently, the trace space ellipses in the plane of x and x′ (as opposed to x̃

and x̃′ are those of Eq. (2.106) but offset from the origin by amounts ηxδ and η′xδ

along the horizontal and vertical axes respectively. In this representation then

the set of all possible trace space trajectories consists of the set of concentric

ellipses described by (2.106) plus the set of all possible translations of them

along a line in the phase plane which extends from the origin through the point

(x, x′)=(ηx,η
′
x). Figure 2.2(b) illustrates three trace space ellipses in the (x, x′)

plane corresponding to the same value of ex but with different values of δ. Since

there is generally some spread in momentum σδ the phase ellipses are essentially

“smeared out” along this line in a way consistent with the momentum distribution

of the particles in the beam.

2.3.7 Definition of the RMS Ellipse

Since a nonzero dispersion function ηx is produced by the interaction of the beam

with a dipole field, it is reasonable to assume that during some initial interval after

the beam’s generation and before it has encountered such a field, the dispersion is

equal to zero or is at least very nearly zero. Consequently, the phase space ellipses

at this initial point are concentric and so if one chooses a sufficiently large phase

space ellipse, it can be expected to contain most of the particles in the beam and

therefore some proportional relationship may be expected to exist between the

area of this ellipse and the emittance of the beam. Let us therefore suppose that

the beam at some initial point s0 has zero dispersion (
◦
ηx=

◦
ηy=

◦
η
′
x=

◦
η
′
y=0).

The ellipses described by Eq. (2.106) represent an infinity of mathematically

allowed trajectories which particles may follow in transverse trace space as they

propagate along the beamline. Let us choose from among these the ellipse whose
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W-matrix and Courant-Snyder invariant satisfies

◦
W µ =

◦
Σµ and

◦
eµ =

◦
εµ, (2.107)

where
◦
Σµ is the actual RMS matrix of second moments of the beam. We call the

corresponding ellipse the RMS ellipse. After propagating both matrices (
◦
W µ and

◦
Σµ) via the usual linear transport relations (2.91) and (2.105), they are found at

a later position s along the beamline to be related by way of

Σx(s) = Wx(s) + σ2
δdddddd

T ; Σy(s) = Wy(s). (2.108)

If there is horizontal dispersion present in the section of beamline separating

the points s0 and s, then in the horizontal direction the equality of the RMS

emittance εx and the Courant-Snyder invariant ex is destroyed. From Eqs. (2.89)

and (2.108) it follows that the relationships connecting these quantities at point

s are given by

εx =
√

det [Wx + σ2
δdddddd

T ] , εy =
√

detWy = ey . (2.109)

Similarly, the RMS beam sizes in x and y are given by

σx =
√
βxex + η2

xσ
2
δ , σy =

√
βyey . (2.110)

In the limit of zero dispersion the foregoing results are much simplified. In

a dispersionless beamline, the RMS emittance (to linear order and neglecting

space-charge forces) is preserved and the envelope equations have the same form

for both transverse directions. To see the truth of these statements, we need

merely to set ddd = 0 in Eq. (2.108). We then have that the matrix of second

moments and the matrix of Courant-Snyder parameters are equal at all points.

This statement may be written

Σµ (s0) = Wµ (s0) , ddd = 0 =⇒ Σµ(s) = Wµ(s). (2.111)
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The RMS ellipse is a useful concept because it transforms under linear fo-

cusing forces according to the same matrix transport relation as the matrix of

second moments. The Courant-Snyder parameters of the RMS ellipse therefore

provide information about the size of the beam (βµ), the angular divergence or

convergence (γµ), the position-to-angle correlation (αµ), and the phase space area

(eµ). It follows that under these conditions the RMS beam size σµ is equal to

the betatron amplitude function wµ for both transverse directions. Consequently,

Eq. (2.99) takes the form

σ′′µ
σµ

+K2
µ −

ε2µ
σ4
µ

= 0 , (ddd→ 0). (2.112)

The RMS emittance appears on the right-hand side now, since εµ=eµ for both x

and y. Note that this is identical to the RMS envelope equation, Eq. (1.33), in

the absence of the space charge and acceleration terms (κs = γ′ = 0).

2.3.8 Second Order Optics

As a first approximation for the preliminary design of a linear beamline, the first

order matrix approach discussed in Section 2.3.4 is sufficient. A more accurate

description of the single-particle beam dynamics can be obtained by inclusion of

higher-order terms in the matrix expansion in Eq. (2.28). In circular machines,

where minor discrepancies in the theory can accumulate over many passes through

the machine to create significant errors, it may be necessary to include terms up

to 5th order. For linear devices, the inclusion of the 2nd order 6 × 6 × 6 tensor

elements Tijk is often sufficient, although under some circumstances (such as a

large energy spread), 3rd order terms may be required to explain observed beam

dynamics.

Calculating higher order matrix elements is a tedious process. Second order

matrix elements are obtained by expanding the general equations of motion (2.14)
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but keeping terms to second order in products of the coordinates. This produces

a set of coupled nonlinear differential equations. To second order, the transverse

equations of motion read

x′′ + (1− n)k2x− kδ = (2n− 1− β)k3x2 + k′xx′ +
1

2
kx′2

+ (2− n)k2xδ +
1

2
(k′′ − nk3 + 2βk3)y2 + k′yy′ − 1

2
ky′2 − kδ2, (2.113)

y′′ + nk2y = 2(β − n)k3xy + k′xy′ − k′x′y + kx′y′ + nk2yδ.

Although these equations cannot be solved through direct analytical means,

as in the linear case, the required matrix elements can be extracted by the use

of driving terms. Consequently, their solutions are subsequently transformed

into the sort of Cartesian basis used in our linear evaluation, by way of the

tranformation. This is done by substituting the following form for the solutions

xi = Rij
◦
xj + T̃ijk

◦
xj

◦
xk ; i = 1, 2, 3, 4 (2.114)

into Eqs. (2.113) and then equating coefficients of like products of the initial

coordinates (
◦
xj

◦
xk). This produces a set of differential equations of the form

T̃ ′′ijk(s) +K2
µ(s)T̃ijk(s) = fijk(s) ; i = 1, 2, 3, 4. (2.115)

where µ stands for either x or y and the form K2
x = (n− 1)k2 or K2

y = nk2 that

appears depends upon which of Eqs. (2.113) the particular element originated

from, and the so-called driving terms fijk(s) are functions of n, β, k, Cx,y, Sx,y,

and their derivatives. The second order matrix elements are then obtained by

individually solving each of Eq. (2.115) by integrating the driving term over the

Green’s function Gµ for each term:

T̃ijk =

∫ s

0

Gµ(s, τ)fijk(τ)dτ ; i = 1, 2, 3, 4. (2.116)
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The Green’s function is given by Gµ(s, τ) = Sµ(t)Cµ(τ) − Sµ(τ)Cµ(s). It

should further be noted that to maintain continuity in the second order across

field boundaries, which may change abruptly, it is appropriate to employ a change

from derivatives d/ds with respect to path-length along the reference trajectory

to derivatives d/dz with respect to the longitudinal cartesian coordinate z. That

is, we implement the transformations

x′ =
dx

ds
→ dx

dz
=

dx/ds

1 + kx
, (2.117)

y′ =
dy

ds
→ dy

dz
=

dy/ds

1 + kx
. (2.118)

This change of variable effectively adds an additional term Fijk(s), which is a

function of the first-order matrix elements, to the solution for T̃ijk in Eq. (2.116),

so that the final matrix elements Tijk are given by

Tijk =

∫ s

0

Gµ(s, τ)fijk(τ)dτ + Fijk(s) ; i = 1, 2, 3, 4. (2.119)

Explicit general forms for the matrix elements are derived at length in Refs.

[52, 56]. The transverse second order matrix elements extracted from these results

for a drift, a quadrupole, a dipole, and a sextupole are shown in Table 2.2. It

should be noted that in this table, we have used the abbreviations K1 = −k2n

and K2 = k3β for the quadrupole and sextupole field strengths respectively. This

is consistent with the notation of Eqs. (2.50) and (2.51).

The longitudinal (i = 5) matrix elements T5jk are obtained by expanding the

expression for the time delay ∆t in Eq. (2.21) but keeping terms to second order

in ζ and δv/v0. Consequently, in place of Eq. (2.23) we have

z =
◦
z − ζ + (s+ ζ)

δv

v0

− s

(
δv

v0

)2

. (2.120)

The velocity deviation δv/v0 can then be expanded in powers of momentum

deviation δ in accordance with Eq. (2.31). Keeping only terms that are up to
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Table 2.2: Second-order (relativistic) matrix elements for common optical beam-
line components.

Element Drift Quad Dipole Sextupole

T111 0 0 −k
sin2(ks)

2 −K2s2

4

T121 0 0 sin[ks] cos(ks) −K2s3

6

T122 0 0 1
k

cos[ks] sin2(ks/2) −K2s4

24

T133 0 0 0
K2s2

4

T143 0 0 0
K2s3

6

T144 0 0 − 1
2k

(1− cos(ks))
K2s4

24

T161 0 1
2
√

K1s sin(
√

K1s) sin2(ks) 0

T162 0
−3K2

1s cos(
√

K1s)+3K
3/2
1 sin(

√
K1s)

6K2
1

1
k

sin(ks)[1− cos(ks)] 0

T166 0 0 − 1
2k

sin2(ks) 0

T211 0 0 0 −K2s
2

T221 0 0 0 −K2s2

2

T222 0 0 − sin(ks)
2 −K2s3

6

T233 0 0 0
K2s

2

T243 0 0 0
K2s2

2

T244 0 0 − sin(ks)
2

K2s2

2

T261 0
3K2

1s cos(
√

K1s)+3K
3/2
1 sin(

√
K1s)

6K1 k sin(ks) 0

T262 0 1
2
√

K1s sin(
√

K1s) 0 0

T266 0 0 − sin(ks) 0

T331 0 0 0
K2s2

2

T332 0 0 0
K2s3

6

T341 0 0 sin(ks)
K2s3

6

T342 0 0 1
k

(1− cos(ks))
K2s4

12

T363 0 − 1
2
√

K1s sinh(
√

K1s) 0 0

T364 0
−K1s cosh(

√
K1s)+

√
K1 sinh(

√
K1s)

2K1
s − 1

k
sin(ks) 0

T431 0 0 0 K2s

T432 0 0 0
K2s2

2

T441 0 0 0
K2s2

2

T442 0 0 0
K2s3

3

T463 0 − 1
2 [K1s cosh(

√
K1s) +

√
K1 sinh(

√
K1s)] 0 0

T464 0 − 1
2
√

K1s sinh(
√

K1s) 0 0

T511 0 − 1
4 K1(s − cos(

√
K1s) sin(

√
K1s)√

K1
) 0 0

T521 0 1
2 sin2(

√
K1s) 0 0

T522 − s
2 − 1

4 (s +
cos(

√
K1s) sin(

√
K1s)√

K1
) − 1

2k
sin(ks) − s

2

T533 0 1
4 K1(s − cosh(

√
K1s) sinh(

√
K1s)√

K1
) 0 0

T543 0 − 1
2 sinh2(

√
K1s) 0 0

T544 − s
2 − 1

4 (s +
cosh(

√
K1s) sinh(

√
K1s)√

K1
) − 1

2k
sin(ks) − s

2

T561 0 0 0 0

T562 0 0 1
k

[cos(ks)− 1] 0

T566 0 0 0 0
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second order in ζ and δ this yields

z =
◦
z − ζ +

δ

γ2
0

(ζ + s)− s

[
1

γ4
0

+
3

2

(
β0

γ0

)2
]
δ2. (2.121)

For an ultrarelativistic beam, only the first two terms contribute (z =
◦
z− ζ).

The remaining terms containing powers of 1/γ0 contribute nonrelativistic cor-

rections to the second order matrix elements involving the momentum error δ,

namely the nonvanishing T5jk where j and/or k is equal to 6. These correction

terms are derived in [51]. The relativistic terms are then obtained from the ex-

pression z =
◦
z−ζ, which is the same expression used in the linear case except that

the integral for ζ from Eq. (2.20) is expanded to second order in the transverse

coordinates:

z ≈ ◦
z +

∫ s

0

[
kx+

1

2
(x′2 + y′2)

]
ds. (2.122)

The matrix elements are then obtained by substituting the form z = R5j
◦
xj +

T5jk
◦
xj

◦
xk into the left-hand side and the form of Eq. (2.114) for the transverse

coordinates on the right-hand side and then equating coefficients of like pow-

ers of the initial coordinates
◦
xi. General forms for the nonvanishing relativistic

matrix elements T5jk are given in Refs. [52, 57]. The explicit forms for a drift,

quadrupole, dipole, and sextupole obtained therefrom are displayed in Table 2.2.
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CHAPTER 3

Dogleg Compression and Bunch Shaping

The technique for generating ramped electron bunches proposed in Section 1.5.2

relies upon the use of a dogleg as a bunch compressor. We will derive in the

present chapter the general beam optics theory of this device. We then apply

this theory specifically to the dogleg design implemented at the UCLA Neptune

Laboratory, including discussion of the optimal Twiss parameters for matching

the electron beam into the device and conditions for killing the horizontal dis-

persion and its derivative. Additionally, we describe in detail the bunch-shaping

mechanism in the language of first- and second-order beam optics. The resulting

analytical predictions are supported with simulations of the Neptune beamline.

3.1 Theory of the Dogleg Compressor

3.1.1 General Conditions on the System Optics

Examples of three dogleg beamlines found at different facilities are shown in Fig.

3.1: (a) the Accelerator Test Facility (ATF) at Brookhaven National Laboratory,

(b) the UCLA Neptune Laboratory, and (c) the Stanford Linear Accelerator

Laboratory (SLAC) ORION test beamline. The drawings are cartoons drawn to

different scales, but the actual physical lengths are shown on the figure. Wedges,

blue lenses, and red rectangles represent dipoles, quadrupoles, and sextupoles,
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Figure 3.1: Cartoon drawings of doglegs at (a) ATF-VISA, (b)
UCLA-Neptune, and (c) ORION-SLAC. Each drawing is scaled to fit
the figure.
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respectively. In the drawing an approximate representation of the horizontal

dispersion function ηx is superimposed. We observe that the arrangement of

magnets has a mirror symmetry in the beamlines of Fig. 3.1(b) and (c), but

not (a). Although it is not strictly necessary to implement this sort of optical

symmetry, doing so simplifies both the analytical description and experimental

operation of the device as a compressor. Optimal operation of the dogleg as

a bunch compressor, under an optically symmetric geometry, relies upon the

horizontal dispersion function ηx passing through zero at the midpoint between

the bends. This ensures that the final dispersion function and its derivative

with respect to the path length parameter s are both zero at the exit of the

device. In order to further utilize the symmetry of the beamline in controlling

the beam size and eliminating net emittance growth, we additionally require that

a waist be formed at the midpoint. This ensures that the beta functions have

mirror symmetry and therefore return to their original values at the exit of the

beamline. In summary, then, the contraints we will impose upon the system are

that it

(i) be optically symmetric,

(ii) be nondispersive (ηx = η′x = 0 at the exit), (3.1)

(iii) have a waist at the midpoint (αx = αy = 0).

For the optical analysis we will represent the trace space coordinates of a test

particle in the beam distribution using the transport 6-vector notation x =

(x, x′, y, y′, z, δ) described in Section 2.1.4. Let R(s0, s) denote the transport

matrix between the points s0 and s, with s = 0 denoting the entrance of the

first bend magnet of the dogleg, and let Σ(s) denote the 6× 6 matrix of second

moments of the beam distribution at the point s. Since we are concerned with

the values of the various system parameters primarily at three points (the en-
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trance s = 0, the midpoint s = ŝ, and the exit s = ∆s), we adopt the following

simplified notation:

R̂ ≡ R(0, ŝ), R ≡ R(0,∆s),
◦
Σ ≡ Σ(0), Σ̂ ≡ Σ(ŝ), Σ ≡ Σ(∆s). (3.2)

The linear analysis then proceeds straightforwardly, and is further simplified

by the symmetry condition (i) which effectively reduces the problem to that of the

half-lattice, containing only a compound bend radius ρ, quadrupoles, and drifts.

The free parameters are then the quadrupole focal lengths and the initial Twiss

parameters of the beam (which can be adjusted using the upstream optics on

the main beamline). Under the assumption of optical symmetry, the remaining

conditions, which we may write as

R̂16 = 0 (3.3)

Σ̂12 = Σ̂21 = Σ̂34 = Σ̂43 = 0 (3.4)

form contraints upon the system which effectively reduce the number of free

parameters. Equations (3.3) and (3.4) produce a set of simultaneous algebraic

equations for the values of the focal lengths fi (or equivalently, the field strengths

Ki) of the quadrupoles and the initial Twiss parameters
◦
α and

◦
β, which are

connected to the midpoint sigma-matrix elements by the linear transport relation

Σ̂ = R̂T
◦
ΣR̂. (3.5)

For a given initial beam, Eqs. (3.3) and (3.4) provide the values of the quadrupole

strengths which optimize the lattice, to linear oder.

3.1.2 Transformation Equation for the Longitudinal Coordinate

For considerations of beam shaping, we are concerned with the longitudinal (or

i = 5) component of the general transport relation Eq. (2.27) from the entrance
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s = 0 to the exit of the final bend at s = ∆s which is given by

z =
◦
z +R51

◦
x+R52

◦
x
′
+R56δ + T561

◦
xδ + T562δ

◦
x
′
+ . . . (3.6)

Here we have included nonlinear terms dependent only on the second-order

coupling between the momentum error and the motion in x. For beams of small

transverse emittances but with a large energy spread, the chromatic terms in the

transformation will tend to dominate the final form of the longitudinal profile.

Among these the strongest contributors are the longitudinal dispersion terms,

which are dependent on the momentum; the coupling of final longitudinal position

to the initial transverse coordinates is relatively quite small. Hence, we may

formulate the following approximation, including terms up to thrid order in the

momentum error δ:

z ≈ ◦
z +R56δ + T566δ

2 + U5666δ
3 + . . . (3.7)

The first order coefficient R56 = (∂z/∂δ)δ→0 represents the longitudinal dis-

persion function ηx. The remaining elements, T566, U5666, . . ., are higher-order

momentum error contributions to the longitudinal dispersion. We may consider

Eq. (3.7) to apply to a beam of small transverse emittances and large energy

spread. Of course, it is conceivable to have a beam of very small emittance, but

which is either large in its transverse dimensions and very well collimated, or

which is very small in transverse size but with large angles. In either of these

cases, the assumption of small emittance is insufficient, so we additionally stipu-

late that the beam size is well controlled and does not undergo a sharp focus. It is

also presumed that the beam is sufficiently relativistic that space charge may be

neglected. The point at which higher-order terms in Eq. (3.7) may be truncated

depends upon the energy spread of the beam. In practice it is rarely necessary

to consider higher than third-order contributions for single-pass transport. For
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the Neptune dogleg compressor, the third-order effects are negligible. General

relations for the first- and second-order contributions (R56 and T566) are derived

explicitly in the following section.

3.1.3 Derivation of the Longitudinal Dispersion Terms

Explicit first-order matrix elements for various common beamline components

were provided in Table 2.2. We may write generic matrices for a bend B of angle

θ = k∆s and bend radius ρ = 1/k, a thin-lens quadrupole of focal length f and

a drift of length l as follows:

B(θ, ρ) =



cos θ ρ sin θ 0 0 0 ρ(1− cos θ)

−(sin θ)/ρ cos θ 0 0 0 sin θ

0 0 1 ρθ 0 0

0 0 0 1 0 0

− sin θ ρ(cos θ − 1) 0 0 1
(
ρθ
γ2
0
− ρθ + ρ sin θ

)
0 0 0 0 0 1


(3.8)

Q(f) =



1 0 0 0 0 0

−1/f 1 0 0 0 0

0 0 1 0 0 0

0 0 1/f 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


; (3.9)
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D(l) =



1 l 0 0 0 0

0 1 0 0 0 0

0 0 1 l 0 0

0 0 0 1 0 0

0 0 0 0 1 l /γ2
0

0 0 0 0 0 1


; (3.10)

Let Y represent the linear matrix for a combination of quadrupoles and drifts.

The total first order transport matrix for a dogleg can then be written R = BY B̃,

where B = B(θ, ρ), B̃ = B(−θ,−ρ) and Y has the form

Y =



Y11 Y12 0 0 0 0

Y21 Y22 0 0 0 0

0 0 Y33 Y34 0 0

0 0 Y43 Y44 0 0

0 0 0 0 1 Y56

0 0 0 0 0 1


; (3.11)

The resultant horizontal dispersion function and its derivative (elements R16 and

R26 of the total transport matrix) obtained by matrix multiplication are then

given by

R16 = ρ− ρ cos θ + ρ(cos θ − 1)(Y11 cos θ + ρY21 sin θ)

− sin θ(Y12 cos θ + ρY22 sin θ), (3.12)

R26 = sin θ + (cos θ − 1)(ρY21 cos θ − Y11 sin θ)

+ sin θ(Y12 sin θ − ρY22 cos θ)/ρ.

The longitudinal dispersion element may then be written in terms of these func-

tions as follows:

R56 = Y56 +
2θρ

γ2
0

− 2θρ+ (2ρ−R16) sin θ +R26ρ(1− cos θ). (3.13)
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Noting that Y56 +2ρθ/γ2
0 = ∆s/γ2

0 , where ∆s is the total path length, we see that

if the quadrupoles are effectively utilized to eliminate the horizontal dispersion

terms (R16, R26 → 0) then Eq. (3.13) reduces to

R56 =
∆s

γ2
0

− 2ρ(θ − sin θ) (3.14)

Noting that according to Eq. (2.69), the longitudinal dispersion element is related

to the momentum compaction via R56 = ηx = ∆s[(1/γ2
0) − αc] we see that

Eq. (3.14) is consistent with the example of Eq. (1.53) given earlier under the

replacements ρ → R0 and θ → π/4. Furthermore, we see that for a relativistic

beam the drift dispersion term ∆s/γ2
0 is close to zero and so the value of R56 is

inherently negative and that of αc is positive.

To obtain an analytical expression for the second-order longitudinal disper-

sion (element T566 of the total transformation) we required the assistance of the

commercial software package Mathematica 5.1. Because of the cumbersome al-

gebraic manipulations involved, we will merely outline the steps used to arrive at

our results. Tabulations of the various second-order matrix elements were given

in Table 2.2. For simplicity, we will represend the second-order counterparts to

the linear matrices Bij, Yij, and B̃ij by denoting them in component form us-

ing the same symbols but with three indices instead of two (i.e. Bijk, Yijk, and

B̃ijk). For Bijk and B̃ijk we use the analytical forms of Table 2.2 with the re-

placements ks → θ and 1/k → ρ. For Yijk we use a generic form equivalent to

Eq. (3.11), where we set to zero all elements which would naturally vanish for

a system composed only of drifts, quads, and sextupoles. We then produce the

total second-order matrix T by successive multiplication of the matrices for the

individual components, which we can write as

Tijk = Bil[Y B̃]ljk +Bilm[Y B̃]lj[Y B̃]mk (3.15)
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where [Y B̃]ijk = YilB̃ljk + YilmB̃ljB̃mk denotes the second-order matrix for the

first two successive elements B̃ and Y and there are implied sums on repeated

indices. This produces a set of equations for the elements Tijk in terms of ρ,

θ, Yij, and Yijk. Using these expressions, which are algebraically cumbersome

and which we will therefore neglect to write out explicitly, the equation for the

longitudinal dispersion element T566 may be expressed as a linear combination of

the expressions for the other matrix elements as follows:

T566 = 4ρ sin2(θ/2) cos(θ/2) + a16R16 + a26R26 +
∑
W

ai6kTi6k, (3.16)

where W is the set of values

W = {(i, k) : (i, k) = (1, 1), (1, 2), (1, 6), (2, 1), (2, 2), (2, 6), (5, 1), (5, 2)} (3.17)

and

a16 = − cos θ sin θ, a26 = ρ(1 + 2 cos θ) sin2(θ/2),

a161 = 2ρ cos(θ/2) sin3(θ/2), a162 = −1

2
sin2 θ,

a166 = sin θ, a261 = −2ρ2 sin4(θ/2), (3.18)

a262 = 2ρ cos(θ/2) sin3(θ/2), a266 = ρ(cos θ − 1),

a561 = −ρ sin2(θ/2), a562 =
1

2
sin θ

In the limits where R16, R26 → 0, we find that Eq. (3.16) reduces to

T566 = 4ρ sin2(θ/2) cos(θ/2) +
∑
W

ai6kTi6k (3.19)

Recall from Table 2.2 that the T566 element is zero (at least in the relativistic

limit) for all of the constituent components (i.e. quads, drifts, bends, sextupoles).

It therefore arises in this system by virtue of the interaction of other nonlinear

correlations which form between the transverse and longitudinal coordinates and
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the momentum error. These correlations are embodied by the nonlinear disper-

sion terms Ti6k which appear in Eq. (3.19). For a chirped electron beam, such as

that proposed in Section 1.5.2 as being necessary for the ramped beam mecha-

nism, the beam has a pre-existing correlation between z and δ. Consequently, the

correlations between the transverse coordinates and δ are inherently coupled to z

as well. The importance of the term T566 in the general longitudinal transforma-

tion of Eq. (3.6) will be made clear in the following sections, where it is found to

produce a profound distortion of the longitudinal phase space. This distortion,

if left uncorrected, effectively destroys the ramped shape of the electron bunches

that is predicted by the linear theory. As will be seen, the implementation of

sextupoles can be used to remedy this situation.

3.1.4 Bunch Shaping Mechanism

The basic mechanism proposed in Section 1.5.2 for generating ramped electron

bunches required an electron bunch that is initially positively chirped in energy

with higher-energy particles at the head of the bunch. A plot of the longitudinal

trace space distribution of such a beam is shown in Fig. 3.2(a). This distri-

bution was produced by a simulation of the UCLA Neptune photoinjector and

linac, using the particle tracking code PARMELA, with a simulated beam charge

of 600 pC and a beam energy of 11.8 MeV. The energy chirp was produced by

setting the simulated injection phase in the linac to 22 degrees behind the phase

which corresponds to the peak acceleration. In Fig. 3.2(b) we impose a simple

linear transformation of the form z → z + ∂z
∂δ
δ upon the longitudinal coordinate,

where we have chosen ∂z/∂δ = −5 cm. Since the transformative term is negative

(i.e. ∂z/∂δ < 0) particles at the head of the bunch, for which δ > 0, are trans-

ported backward within the bunch and particles in the tail, for which δ < 0, are
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Figure 3.2: Artificial manipulation of a chirped energy distribution (a)
by a linear transformation with ∂z/∂δ < 0 to generate a ramped bunch
(c). In (b) a quadratic term has been added to the transformation.

transported forward.

As seen in Fig. 3.2(c), this linear transformation produces a “hook-shaped”

distribution in the longitudinal trace space, which has a distinctly triangle-like

current profile. The pronounced curvature of the distribution exhibited by this

“hook” is a reflection of the RF curvature of the chirped distribution in Fig.

3.2(a). The RF curvature (or nonlinearity of the δ-z correlation) is an artifact

of the acceleration process, owing to the fact that the accelerating field has a

sinusoidal variation in time. This curvature is in fact critical to the bunch-shaping

mechanism we are proposing. If the initial chirp were perfectly linear then the

transformation used to produce Fig. 3.2(c) would result in a compression of the

pulse, but it would not alter its shape.

As we found in Section 3.1.3, the transformation imposed upon the longitu-

dinal trace space by a dogleg with properly controlled horizontal dispersion is

(to lowest order) of the same form as that which we have artificially imposed
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in Fig. 3.2. That is, the longitudinal transformation for a dogleg compressor is

dominated by the dispersion term R56 = (∂z/∂δ)δ→0, which is inherently negative

according to Eq. (3.14). However, with significant energy spread, the presence of

the higher-order longitudinal dispersion terms in the transformation of Eq. (3.7)

for a dogleg must be taken into consideration. Including a term that is quadratic

in the momentum error in the transformation, corresponding to the second-order

term T566 in Eq. (3.7), produces the plot shown in Fig. 3.2(b). The longitudinal

phase space in this plot is severely distorted by the quadratic correlation between

z and δ, destroying the ramped profile. As we will see in Section 3.2.4 the value

T566 = - 2 m used in Fig. 3.2(b) is close to the actual second-order longitudinal

dispersion of the UCLA Neptune dogleg. Consquently, the second-order term

T566 is of particular concern, and thus its elimination by the use of sextupole

magnets will be considered in the next section.

3.1.5 Sextupole Correction

In order to linearize the longitudinal transport of the dogleg and thereby mimmic

the mathematical transformation of Fig. 3.2, we must eliminate the second-order

longitudinal dispersion term T566 in Eq. 3.7. The obvious method for doing this

is to use sextupole magnets, which are inherently second-order in their effects,

and have no first-order (linear) matrix elements. They may thereby be employed

to manipulate the second-order properties of the beamline with no effect upon

its optics to linear order. Higher than second-order corrections may in principle

be implemented (to eliminate U5666 for example), by use of octupole or higher

multipole magnets, but for single-pass transport this is rarely necessary.

To determine the dependence of T566 on the sextupole field strength, let us

assume that the sextupoles lie just inside the bends and are separated from
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each other only by quads and drifts. Although the same final result may be

obtained without them, these assumptions will greatly simplify our calculation.

Let the two sextupoles, of strengths κ and ακ, respectively, and of equal length

d, be denoted by the symbols S and S̃ and the intervening system of quads and

drifts by H. We then decompose the first- and second-order representations of

Y as Yij = SikHklS̃lj and Yijk = Sil[HS̃]ljk + Silm[HS̃]lj[HS̃]mk, where [HS̃]ijk ≡

HilS̃ljk+HilmS̃ljS̃mk. Multiplying the linear matrices out explicitly and imposing

the requirements

R16 = 0, R26 = 0, det

 H11 H12

H21 H22

 = 1, (3.20)

we arrive at the following conditions on H:

H12 = −(1 +H22)(d+ ρ tan[θ/2]),

H21 = (1−H22)/(d+ ρ tan[θ/2]), (3.21)

H11 = H22.

Applying these conditions in the calculation of the second-order matrix, we arrive

at the following result for the element T566 expressed in powers of κ:

T566 = 2 sin2(θ/2)(A0ρ sin θ + A+ + A− cos θ)− d

4
sin2 θ

2
(3.22)

×
[
4|C0|2

(
2ReC0 − d cos

θ

2

)
sin

θ

2
+ 8ρ3 cos θ(1− sin θ)

]
(1− α)κ,

where for the sake of compactness we have defined the functions

A± ≡ H162 +H522 + d[H161 +H262 +H521 + d(H261 +H511)− 1]

± ρ2(H261 +H511),

A0 ≡ 1 +H161 +H262 +H521 + 2d(H261 +H511)− cos θ, (3.23)

C0 ≡ d cos(θ/2) + (1 + i)ρ sin(θ/2).
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With the additional associations

A ≡ 2 sin2(θ/2)(A0ρ sin θ + A+ + A− cos θ) (3.24)

C ≡
[
4|C0|2

(
2ReC0 − d cos

θ

2

)
sin

θ

2
+ 8ρ3 cos θ(1− sin θ)

]
× d

4
sin2 θ

2
,

we find that Eq. (3.22) takes the form

T566 = A− C(1− α)κ (3.25)

The linear dependence on κ is a reflection of the fact that the second-order matrix

elements for a sextupole are proportional to the field strength. The quantities

A and C are algebraic functions of θ and ρ, as well as the drift lengths and

quadrupole focal lengths. The general form of Eq. (3.25) is valid for any dogleg

with 2 symmetrically placed sextupoles, although the exact functional depen-

dences of A and C may vary with sextupole placement.

If the goal is to eliminate T566 altogether, then (i) to avoid asymptotic be-

havior, the value of α (the ratio of the two sextupole field strengths) should not

approach unity, and (ii) in order to minimize κ the quantity C(1− α) should be

large and therefore α should be negative. A simple choice in agreement with these

requirements is α = −1, corresponding to sextupole fields equal in magnitude but

of opposite polarity. As a rule, the minimum number of sextupoles needed is equal

to the number of second-order matrix elements one wishes to eliminate. There-

fore α = 0 is also a possibility, although the elimination of one sextupole would

disrupt the optical symmetry and require the remaining one to have double the

field strength. Minimization of the required sextupole fields, through appropriate

placement of the correcting magnets, is desirable from the standpoint of prevent-

ing the inadvertent introduction of strong second-order geometrical effects as well
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as third-order chromatic effects. From a heuristic perspective, the sextupole ma-

nipulation of the T566 amounts to a correction of chromatic errors introduced

by the horizontally focusing lenses. This connection is made in greater detail in

Section 3.2.4.

3.1.6 Emittance Growth

The sextupole correction of T566 in this system often has the added effect of

minimizing the horizontal emittance growth, due to the coupling of T566 to the

second-order horizontal dispersion discussed above. For a beam of large energy

spread and small transverse emittance, the nonlinear emittance growth is dom-

inated by the second-order horizontal dispersion elements T166 and T266. To

demonstrate this, note that to second order, the matrix of second moments Σ

transforms according to

Σjk =

∫
(Rjl

◦
xl + Tjlm

◦
xl
◦
xm)(Rkn

◦
xn + Tknp

◦
xn

◦
xp)f(

◦
x)det(J)d6 ◦x, (3.26)

where the Jacobian of this transformation is

Jij =
∂xi

∂
◦
xj

= Rij +
∑
k

Tijk
◦
xk(1 + δjk), (3.27)

with δjk representing the Kronecker delta. Writing Eq. (3.26) in the bracket

notation, we have

Σjk = RjlRkn〈
◦
xl
◦
xn〉+ 2TknpRjl〈

◦
xl
◦
xn

◦
xp〉+ TjlmTknp〈

◦
xl
◦
xm

◦
xn

◦
xp〉, (3.28)

where there is an implied sum on repeated indices and 〈. . .〉 ≡
∫
. . . f(

◦
x)det(J)d6 ◦x.

Now assume the beam distribution function to be uncoupled between the three

trace space planes, to have vanishing third moments, and unit Jacobian determi-

nant. Then the upper left 2× 2 submatrix of Eq. (3.28) takes the form

Σx = Mx

◦
ΣxM

T
x + σ2

δdddddd
T + 〈δ4〉DDDDDDT + Σgeo, (3.29)
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where DDD = (T166, T266) is the second-order dispersion vector, and ddd, Mx, and
◦
Σx

are the first-order horizontal dispersion vector, the 2 × 2 linear transpor matrix

for the (x, x′) trace plane, and the initial 2 × 2 matrix of second moments, re-

spectively, as they were defined in Eqs. (2.87), (2.88), and (2.92). The matrix

Σgeo is the contribution from second-order geometrical terms. Equation (3.29)

may be regarded as a second-order extension of Eq. (2.108). For a beam of

small intitial emittance (with well-controlled beam sizes and angles) and large

energy spread, Eq. (3.29) is dominated by the dispersion terms, and we can set

Σgeo << 〈δ4〉DDDDDDT . Furthermore, if the beam distribution in the z trace space

plane can be approximated by a rotated bi-Gaussian in z and δ, then 〈δ4〉 = 3σ4
δ .

With these approximations, insertion of Eq. (3.29) into the definition of the

transverse emittance, Eq. (2.89), we have that the final emittance εx,f is given

by

εx,f ≈
√

det(Mx

◦
ΣxMT

x + σ2
δdddddd

T + 3σ4
δDDDDDD

T ). (3.30)

The first of the three terms inside the determinant in Eq. (3.30) is the contri-

bution from the initial emittance, which would be invariant if the transformation

were governed solely by the linear matrix Mx. Consequently, if the first-order

horizontal dispersion and its derivative are eliminated in accordance with the

discussion surrounding Eqs. (3.14) and (3.19), then ddd → 0 and the emittance

growth described by Eq. (3.30) is dominated by the third term inside the paren-

theses. The coupling of longitudinal to horizontal dispersion is such that for the

sextupole configuration described in Section 3.1.5 the values of T166 and T266 tend

to be reduced under the sextupole correction of T566. Consequently, in many cases

sextupole correction of the longitudinal dispersion also has a reducing effect upon

the transverse emittance.
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3.2 The UCLA Neptune Dogleg Compressor

Having derived a general theoretical treatment of the dominant first- and second-

order optics pertinent to the shaping of the longitudinal trace space using a dog-

leg, we proceed to apply these results to the specific design of the UCLA Neptune

dogleg compressor. In particular, we will derive the matching conditions on the

initial transverse Twiss parameters of the beam, as a function of the quadrupole

focal lengths, which are additionally constrained to produce a horizontally disper-

sionless beamline (to first order). We then use particle tracking codes to simulate

the compressor and verify our analytical predictions.

3.2.1 A Simple Model of the Compressor

The layout of the UCLA Neptune dogleg compressor, which has been dubbed the

“S-Bahn” after a train system in Germany, is shown in Fig. 3.3 using the same

iconography as Fig. 3.1, but with labels indicating the quadrupole spacings L1,

L2, L3, the quadrupole focal lengths f1, f2, and the sextupole field strengths κ and

ακ. A more detailed description of the actual beamline hardware will be provided

in Chapter 5. Furthermore, details such as the finite lengths of the quadrupole

magnets and the fact that each of the 45 degree bends is actually composed of two

successive dipole magnets will be taken into account in the simulations, but will

be ignored for the purposes of the simplified linear analytical treatment which

we will now undertake. For our present purpose (namely, describing the linear

beam optics and parameter space of this compressor) the simple representation

of Fig. 3.3 is sufficient. For the sake of consistency with the notation of Eq.

(3.2), the initial, midpoint, and final s-positions are labeled (s = 0, s = ŝ, and

s = ∆s). The bend angle is 45 degrees, or θ = π/4, with an effective bend radius

of approximately ρ = 32 cm. The quad spacing lengths are L1 = 50 cm, L2 = 40
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Figure 3.3: Cartoon drawing of Neptune “S-Bahn” dogleg.

cm, and L3 = 7.54 cm.

The configuration of quadrupoles shown in Fig. 3.3 is similar to that of

the simple example considered in Section 1.3.3, but with the addition of two

horizontally defocusing (vertically focusing) quadrupole magnets symmetrically

placed near the midpoint. The addition of these two magnets helps to control

the vertical beam size. However, since the beam has a sharp horizontal waist at

the midpoint and the dispersion is small there, the vertically focusing quads are

nearly free in their strength. Without them, in order to obtain a vertical waist

at the midpoint, condition (iii) of Eq. (3.1), the beam size at the entrance of

the S-Bahn would have to be larger and more sharply convergent in the vertical

dimension than in the horizontal (i.e. we would require that the initial Twiss

parameters satisfy
◦
αy >>

◦
αx and

◦
βy >>

◦
βx at s = 0). This would be difficult to

accomplish considering that the photoinjector produces a nearly round beam (that

is, the horizontal and vertical Twiss parameters and emittances are nearly equal).

The two sextupoles are present in order to provide a knob for manipulating the

second-order horizontal dispersion (T566) in accordance with the discussion of
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Figure 3.4: Plot of the equation R̂16(f1, f2) = 0.

Section 3.1.5.

3.2.2 Dispersion-Killing Conditions

Under the assumption of optical symmetry, the requirement that the beamline

be nondispersive [condition (ii) of Eq. (3.1)] was found in Section 3.1.1 to reduce

to Eq. (3.3), namely R̂16 = ηx(ŝ) = 0. The transport matrix from the entrance

of the first bend to the midpoint of the S-Bahn, written in terms of the linear

matrices for a bend, a thin lens, and a drift as given by Eqs. (3.8) - (3.10), reads

R̂ = D(L3)Q(f2)D(L2)Q(f1)D(L1)B(θ, ρ) (3.31)

Setting element (1,6) of this matrix to zero produces an algebraic equation relat-

ing the parameters L1, L2, L3, f1, f2, θ, and ρ. Among these, the focal lengths f1

and f2 are the obvious free parameters, the others having the fixed values given

in the previous section. The condition R̂16 = 0 thus describes a curve in the space

of the free parameters f1 and f2. The plot of this curve is shown in Fig. 3.4.

Note that the values on the horizontal axis are negative because f2 represents
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the focal length of the horizontally defocusing lens. Each point on the curve in

Fig. 3.4 represents a possible operating point. However, the choice of (f1, f2)

affects the values of the initial Twiss parameters which are needed in order to

produce a waist at the midpoint, and thereby symmetrize the beam envelope.

Since large initial Twiss parameter values are actually more difficult to produce

out of the photoinjector, we will search for a point on the f1-f2 curve which

minimizes the initial Twiss parameter values. This analysis is performed in the

following section.

3.2.3 Beam Matching Requirements

The last of the three conditions in Eq. (3.1) requires a beam waist at the mid-

point of the dogleg. This condition, in conjunction with the optical symmetry

requirement, symmetrizes the beam envelopes σx(s) and σy(s) about the midpoint

(s = ŝ). While this is not strictly necessary for the beam-ramping mechanism

to work, it is important from the standpoint of controlling the transverse beam

size. The corresponding mathematical relation written in terms of the midpoint

Σ matrices, Eq. (3.4), amounts to a constraint upon the initial Twiss parameters

of the beam at the dogleg entrance, which are in turn related to the midpoint

sigma matrix via the usual linear transport relation, Eq. (3.5).

Since the dogleg has been constrained to have zero horizontal dispersion at the

midpoint, we can equate the Σ-matrices with the Twiss parameter W-matrices

for the RMS ellipse at both the entrance and midpoint. That is,
◦
Σ =

◦
W and

Σ̂ = Ŵ . Combining these with the midpoint waist condition of Eq. (3.4) we have
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that

◦
Σx = εx

 ◦
βx − ◦

αx

− ◦
αx

◦
γx

 ,
◦
Σy = εy

 ◦
βy − ◦

αy

− ◦
αy

◦
γy

 , (3.32)

Σ̂x = εx

 β̂x 0

0 1
/
β̂x

 , Σ̂y = εy

 β̂y 0

0 1
/
β̂y

 . (3.33)

Relating (3.32) and (3.33) via Σ̂µ = M̂µ

◦
ΣµM̂

T
µ produces 8 separate relations,

although half of them are not linearly independent. Eliminating the redundant

equations leaves the following:

◦
βxR̂

2
11 − 2

◦
αxR̂11R̂12 +

◦
γxR̂

2
12 = β̂x,

◦
βyR̂

2
33 − 2

◦
αyR̂33R̂34 +

◦
γyR̂

2
34 = β̂y,

R̂11(
◦
βxR̂21 −

◦
αxR̂22) + R̂12(

◦
γxR̂22 −

◦
αxR̂21) = 0, (3.34)

R̂33(
◦
βyR̂43 −

◦
αyR̂44) + R̂34(

◦
γyR̂44 −

◦
αyR̂43) = 0.

These constitute four equations in six unknowns, the unknowns being
◦
αx,y,

◦
βx,y, and β̂x,y. Furthermore, the equations are uncoupled between x and y, so

◦
αx

and
◦
βx can separately be expressed as functions only of β̂x; and

◦
αy and

◦
βy can

separately be expressed as functions only of β̂y. Due to the dependence of the

matrix R̂ on the focal lengths of the quadrupoles, a different set of such solutions

exists for every point (f1, f2) on the curve in Fig. 3.4. Solutions corresponding

to three such points are shown in Fig. 3.5(a), (b), and (c).

In Fig. 3.5, the initial x Twiss parameters are plotted against β̂x in the first

column and the initial y Twiss parameters are plotted against β̂y in the second

column. The beta functions are in units of meters. The plots in the third column

show a reproduction of Fig. 3.4 with a dot marking the coordinates of the point

along the f1-f2 curve for which the Twiss parameter equations were solved. Note
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Figure 3.5: Allowed Twiss parameters for three different values of
(f1, f2) corresponding to points on the curve in Fig 3.4: (a) f1 = 0.267
m, f2 = -0.42 m; (b) f1 = 0.269 m, f2 = -0.63 m; (c) f1 = 0.267 m, f2

= -0.82 m.

105



that the x-parameters in the first column are relatively insensitive to the choice

of f1 and f2 as compared with the y-parameters. Thus, it is good that these

quads are relatively unconstrained.

Also, all solutions for the Twiss parameters
◦
αx,y are positive, and therefore

the incoming beam must be convergent in both dimensions. To minimize the

vertical spot size at the midpoint of the compressor and to keep the initial Twiss

parameters near the values achievable with the Neptune photoinjector and linac

(which tend to be on the order of α ≈ 1, β ≈ 1 m, we pick the solution for (f1, f2)

which brings the
◦
αy,

◦
βy curves as close to the origin as possible. This solution

corresponds, in fact, to the plot in part (b) of Fig. 3.5, for which f2 = −0.63 m

and f1 = 0.269 m. Optimal coupling of the electron beam into the compressor

then requires matching its Twiss parameters to a set of values which lie on the

first two plots of Fig. 3.5(b). The experimental procedure for accomplishing this

matching will be discussed in Chapter 5.

3.2.4 Analytical Calculations

For the choice of parameter values corresponding to the point (f1, f2) in Fig.

3.5(b), we can determine various quantities of interest analytically by using trans-

port matrix theory. The linear R56 as given by Eq. (3.14), for example, is

R56 = ηx(∆s) = −5.04 cm (3.35)

For a given location of the sextupole magnets, we can also obtain an explicit

form of the second-order longitudinal dispersion corresponding to Eq. (3.25). For

the dogleg layout shown in Fig. 3.3, with the sextupoles positioned a distance h

= 10 cm inside the outermost pair of lenses and having lengths of 5 cm, the T566
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Figure 3.6: Values of κ required to eliminate T566 as a function of
sextupole position s up to the midpoint.

takes the form

T566 = −2.11 m + (0.00175 m4) κ (3.36)

Here we have assumed α = −1, so that the two sextupole magnets have equal

field strengths but opposite polarities.

For this configuration, the T566 therefore has a value of −2.11 m in the absence

of sextupole correction, but can be forced to zero at a sextupole field strength

of κ = 1204 m−3. Our choice of location for the sextupole magnets is informed

by the observation that the nonlinear horizontal chromaticity (i.e. T261) of the

horizontally focusing lenses amplifies the second-order longitudinal dispersion by

coupling it to the linear horizontal dispersion of the dipoles. The T566 then grows

linearly in the drift section after each lens, due to the inherent nonlinear x-z

correlation introduced by the drifts. This correlation is due to deviation from

the paraxial approximation, which is a second-order effect. Consequently the

sextupole correctors should be located close to the horizontally focusing lenses,

so that the chromatic couplings produced by them can be counteracted before
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they have a chance to grow in the subsequent drift sections. This is demonstrated

in Fig. 3.6 where the value of κ needed to cancel the T566 as a function of the

position s of the sextupole magnet from the entrance of the first dipole up to the

midpoint of the compressor. The other sextupole is assumed to be symmetrically

located with field strength −κ. Values of κ are plotted only in regions where a

sextupole 5 cm long (since this is the actual physical length of the sextupoles

used on the Neptune dogleg) could reasonably be placed. Note that the vertical

scale is logarithmic, so the plot indicates that the required field strength grows

by orders of magnitude as the sexupole position moves further from the vecinity

of the outermost lens (marked by the second dashed vertical line).

The location for the sextupoles previously assumed (10 cm inside the outer-

most quads) therefore reflects a compromise between the desire to locate them as

close to the quadrupoles as possible and the spatial constraints imposed by the

hardware and vacuum system. For this choice of sextupole location, the choice

of values of T566 as well as the horizontal second-order dispersion terms T166 and

T266 are plotted against κ in Fig. 3.7. We see that at the sextupole field strength

where the T566 vanishes (around 1200 m−3), the nonlinear horizontal dispersion

terms are simultaneously inverted in sign and reduced in magnitude by nearly a

factor of 3. Consequently, in accordance with the nonlinear emittance formula,

Eq. (3.30), the sextupole correction should also have a reducing effect on the

horizontal emittance growth in the compressor. This prediction is confirmed by

the simulation results presented in the following section.

3.2.5 Simulation Results

The primary codes used in this dissertation for simulating the electron beam

dynamics in the Neptune beamline and dogleg compressor are PARMELA (ver-
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Figure 3.7: Second-order dispersion terms as functions of sextupole
field strength.

sion UCLA-PARMELA 2.1) and ELEGANT (version 15.1.1) [58, 53]. Both of

these are particle tracking codes, which treat the beam as a collection of parti-

cles, whose position and momentum are calculated individually at various points

along the beamline. In order to reduce computation time, only a small number

N , typically much less than the number of actual particles Nb = Q/e being sim-

ulated are tracked. Thus for purposes of space-charge calculations, each of these

N macroparticles has a charge of Q/N .

PARMELA generates the macroparticles at the photocathode based upon

specified drive laser parameters and then transports them through a user-specified

system by numerically integrating the forces in a series of discrete time-steps.

Space-charge effects are included by calculating the electrostatic force “kicks”

in the beam frame at successive time steps either between aggregate clumps of

particles on a user-defined 2D mesh or in a point-to-point fashion between all of

the individual macroparticles. The mesh technique is much faster than the point-

to-point calculation, but because it is 2D it is less accurate if the beam is not
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azimuthally symmetric. ELEGANT, on the other hand, uses transport matrices

(up to third order) to track the macroparticle coordinates in trace space and

propagate them through a series of user-specified beamline components. Since

this approach neglects the space-charge forces, it is valid only at ultrarelativistic

energies (since the space-charge force in the lab frame scales as 1/γ2
0). In the sim-

ulations conducted for this thesis, a combination of PARMELA and ELEGANT

was employed in most cases. PARMELA was used to model the beam dynamics

in the photoinjector and linear accelerator. The macroparticle coordinates of the

beam were then extracted and used as input for an ELEGANT simulation of the

dogleg compressor. In addition, the PARMELA model was extended to include

the dogleg as well, so that the effects of space-charge could be gauged separately.

The longitudinal trace space distributions at the exit of the compressor, pre-

dicted from simulations using PARMELA with 10,000 macroparticles, are shown

without and with sextupole correction in Figs. 3.8(b) and 3.8(c), respectively.

The S-shaped distribution in Fig. 3.8(b) is evidence of the quadratic momentum

dependence of the z transformation produced by the second-order T566 contribu-

tion in Eq. (3.7). Note the similarity between Figs. 3.8 and 3.2. When sextupole

fields are utilized in accordance with the description of Section 3.1.5 to eliminate

this contribution, the resulting distribution [Fig. 3.8(c)] is found to correspond

very closely to that produced by a purely linear R56 transformation, such as that

shown in Fig. 3.2. The resulting current profile exhibits a sharp drop in current

at the back of the bunch, where the distribution begins to turn over on itself,

preceded by an approximately linear ramp of the sort described in Section 1.5.1

as being ideal for generating large-amplitude transformer ratios in a wakefield

accelerator.

It has been observed recently [17] that space-charge driven transverse phase
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Figure 3.8: Plots of the z trace space and current profile from
PARMELA simulations showing (a) the beam at the entrance of the
dogleg compressor, and the same beam at the end (b) without sex-
tupole correction and (c) with sextupole correction.

space bifurcation and accompanying emittance growth are potential hazards en-

countered in low-energy (12-14 MeV) compression at Neptune. To gauge the

tranverse effects arising separately from non-linearities and space-charge forces,

ELEGANT and PARMELA simulations were employed to calculate the normal-

ized transverse emittance εx,N = γ0β0εx of the beam. The ELEGANT simulation,

with sextupoles turned off, predicts an emittance growth in the Neptune dogleg

due to nonlinear effects of ∆εx,N = 13 mm mrad over the initial value of 5 mm

mrad at the entrance. This is consistent with the approximation of Eq. (3.30)

which gives ∆εx,N ≈ 12 mm mrad.

With sextupoles turned on, ELEGANT predicts a much improved ∆εx,N =

1.7 mm mrad, due to partial cancellation of the T166 and T266, as discussed above.

To gauge the effect of space-charge velocity field forces in the dogleg compressor,

a calculational model for sextupoles was introduced into the PARMELA source

code and simulations were run using PARMELA’s point-to-point space charge

routine. With the space-charge routine turned off, the PARMELA results match
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the ELEGANT prediction of ∆εx,N = 1.7 mm mrad. With the space-charge

routine turned on, PARMELA predicts a total emittance growth of ∆εx,N = 11.6

mm mrad, for a 300 pC beam, indicating a significant additional contribution

from space-charge forces. These results lie in the intermediate range of ∆εx,N

values measured in Ref. [17] and do not show evidence of the sort of phase

space bifurcation reported there. The predicted growth in transverse emittance,

however, imposes restrictions upon the focusability of the beam, requiring sharper

focusing angles and higher gradient quadrupole to match the beam into a PWFA.

A planned future experiment at the Neptune Laboratory to focus the beam using

high-gradient permanent magnet quadrupoles will be discussed in Chapter 6.
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CHAPTER 4

Design of Deflecting Cavity for Subpicosecond

Beam Profile Measurements

4.1 Introduction

Experimental verification of the technique proposed in Section 1.5.2 for generating

ramped electron bunches that are one to several picoseconds in duration using a

dogleg compressor, requires a diagnostic that is capable of measuring the current

profile of such bunches with sub-picosecond resolution. The most commonly

employed beam current monitors have rise times in the nanosecond range, making

them unsuitable.

Another possibility is to use the electron beam to generate, via interaction

with a refractive or conducting material, a pulse of radiation [e.g. coherent

Čerenkov radiation or coherent transition radiation (CTR)] which reproduces

the time profile of the bunch intensity, and then use interferometric optical tech-

niques to extract the temporal profile of the emitted pulse. However, such in-

terferometric techniques suffer from the so-called phase retrieval problem. Since

the quantity measured by the interferogram is an autocorrelated intensity, the

phase information is lost, making it impossible to reconstruct the original profile,

without making some assumption about its shape (e.g. Gaussian, Lorentzian,

exponential, etc.) or about the phase distribution (e.g. that it’s equal to the
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minimal Kramers-Kroenig phase).

The intensity profile of the radiation pulse could alternately be measured di-

rectly with a streak camera. This is a device that uses a photocathode to convert

the radiation into electrons by photoemission, accelerates the electrons in a cath-

ode ray tube, and then “streaks” them transversely by deflecting them with a DC

electric field. The deflected electrons then impinge upon a phosphorescent sur-

face or detector. There is currently an operational streak camera in the Neptune

laboratory, but its resolution is on the order of 1 to 2 ps, which is inadequate for

our purposes.

A more direct and sophisticated technique for measuring the time-structure of

an electron beam is to use a radio-frequency (RF) cavity to directly manipulate

the beam’s distribution in phase space so as to create a linear (or nearly linear)

correlation between the longitudinal coordinate z and either (i) the energy, or

(ii) one of the transverse coordinates. In the case of (i) the time structure can be

extracted from the projection of the energy distribution onto one of the transverse

coordinates (e.g. by using a dipole spectrometer magnet). In the case of (ii)

the time structure is immediately obtained from projections of the transverse

coordinate space onto a phosphorescent screen placed in the beam path.

The type of RF cavity employed for application (i) is an accelerating struc-

ture operated at the zero-crossing of the RF (i.e. at the RF phase where the

beam centroid experiences no acceleration). The head and tail of the beam then

experience accelerating forces of opposite sign, thereby producing a strong corre-

lation between longitudinal position and energy. For application (ii), the device

employed is a so-called deflecting cavity. This is an RF structure that operates in

an electromagnetic mode similar to the TM110 mode of a cylindrical pillbox, and

delivers a transverse momentum kick to the electron beam. Such structures are
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Figure 4.1: Illustration of current profile measurement using a deflect-
ing cavity.

also generally operated at or near the zero-crossing of the RF so that the momen-

tum kick imparted to the beam varies linearly with time and the transverse kicks

imparted to the head and tail of the beam are of opposite sign. Consequently,

in the drift following the deflecting cavity, the beam gradually elongates along

the coordinate corresponding to the deflection axis of the cavity. The temporal

structure of the beam thus becomes correlated with one of its transverse coordi-

nates and can be imaged on a simple phosphorescent screen inserted in the beam

path. This procedure is illustrated in Fig. 4.1.

A multi-cell RF deflecting cavity was chosen as the temporal diagnostic for

measuring the current profiles of ramped electron bunches generated by the pho-

toinjector and dogleg compressor at the Neptune laboratory. Note that deflecting

mode cavities were originally invented in the early 1960s as a way to separate

different species of particles in an accelerator [59, 60]. Their potential as a bunch
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length diagnostic was noted soon after [61]. So, the deflecting cavity is a rela-

tively old technology. However, the design of the structure built for the UCLA

Neptune beamline incorporates a number of unique features, including a mod-

ular o-ring-based assembly, high operating RF frequency, and low input power

requirements. In the present chapter we will describe the design process for this

cavity using a bottom-up approach, starting with the basic design parameters and

the analytical formulas for a single-cell pillbox cavity, and then extending these

results to describe multi-cell structures. We then discuss the use of computer

simulations to finalize the geometry of the cavity design, as well as the hardware

details associated with its construction, testing, and installation.

4.2 Instantaneous Transverse Deflection

In order to obtain a few important rule-of-thumb relationships which will be

useful later for developing the first-order cavity design parameters, we consider

an instantaneous sinusoidal transverse voltage V0 sinψ imparted to the beam,

followed by a drift of length L. The amplitude V0 of the deflection is a standard

design parameter for a deflecting cavity, as it ultimately limits the resolution

of the device, as we will demonstrate shortly. (Note that for a physical cavity,

which has nonzero length, the deflecting voltage is obtained by integrating the

net transverse momentum kick imparted to be beam along the length of the

structure.) The y-z correlation imparted by the deflection and the drift may be

written as a matrix equation, y

z

 =

 Q̂

0

+

 1 M̂

0 1

 y0

z0

 , (4.1)
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where [62]

Q̂ =
eV0

p0c

√
βdβs sinψ0 sin ∆ ; M̂ =

eV0

p0c

√
βdβs

2π

λ
cosψ0 sin ∆. (4.2)

and y0 and z0 denote the coordinates of the particle at the location of the final

screen when the deflecting voltage is zero. Here, βd is the beta function at the

deflector, βs is the beta function at the screen, ∆ is the betatron phase advance

from deflector to screen, ψ0 is the injection RF phase (i.e. the phase of the bunch

centroid), and λ is the RF wavelength. The quantity Q̂ represents a vertical

deflection of the beam centroid. If the beam is phased at the so-called RF zero

crossing (ψ0 = 0) then the bunch centroid sees zero net deflection and Q̂→ 0. The

quantity M̂ represents the vertical expansion coefficient of the beam following the

drift. Thus, the contribution to the vertical RMS beam size due to the deflection

is σdef = M̂σz. The total RMS beam size at the screen is then

σy =
√
σ2

0 + σ2
def , (4.3)

where σ0 is the RMS spot size at the screen when the cavity is turned off. In

order to resolve the time structure of the bunch from the vertical streak of the

beam as seen at the screen, we require that the contribution to the vertical spot

size due to the z-correlated deflection exceed the nominal spot size of the beam

with the deflecting voltage turned off by about a factor of two: σdef > 2σ0. This

translates into a condition on the transverse voltage V0 required to resolve the

time structure of the beam, which we may write as

V0 > Vmin =
cU/e

σzLπf
σ0 , (4.4)

where we have used the fact that the quantity
√
βdβs sin ∆ is equal to the drift

length L between the deflector and the screen, and have denoted the relativistic

beam energy by U = γ0mc
2 ≈ p0c. The rule-of-thumb expression in Eq. (4.4)

117



for the minimum deflecting voltage will be useful in developing the basic design

parameters of the deflecting cavity. We can see immediately from Eq. (4.4) that

in order to minimize the needed deflecting voltage, it is beneficial to have a small

initial spot size σ0 as well as a high RF frequency. To achieve the former, it

is customary to locate the screen at a minimum of the beta function (i.e. at a

focus). To take advantage of the inverse relation between Vmin and f we will

choose a high-frequency (X-band) RF power source for the Neptune deflecting

cavity.

4.3 The Single-Cell Pillbox Approximation

We begin our discussion of deflecting cavity design by considering the simplest

example of such a cavity, which is a cylindrical pillbox. We can then utilize these

results to make rule-of-thumb estimates of the design parameters for a multi-cell

structure, such as the required input power and quality factor.

4.3.1 Fields in a Cylindrical Pillbox Cavity

Let us begin by deriving the equations for the electromagnetic fields in a cylin-

drical waveguide of radius b. Under the assumption of a travelling-wave z-

dependence to the fields: E(r)

B(r)

 =

 E(r, φ)

B(r, φ)

 ei(kz−ωt) (4.5)

The wave-equation reduces to the eigenvalue (Helmholtz) equation

(
∇2
t + κ2

) E

B

 = 0 (4.6)
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where

κ2 = k2
0 − k2 ; k0 =

√
µε
ω

c
(4.7)

Applying Maxwell’s equations, it is found that the transverse components of

the fields can be obtained directly from the solutions for the longitudinal compo-

nents. Since the boundary conditions on Ez and Bz are different, the eigenvalues

are in general different. The fields thus naturally divide themselves into two

distinct categories, with the longitudinal component of either the magnetic or

electric field being identically zero. The former case is called transverse magnetic

(TM) and the latter transverse electric (TE):

Bz = 0 ; Ez(r = b) = 0 ; TM

Ez = 0 ; ∂rBz(r = b) = 0 ; TE.
(4.8)

The longitudinal wave equation is then of the form(
∇2
t + κ2

)
Ψ = 0 (4.9)

which for cylindrical symmetry has the solution

Ψmn(r, φ) =

 E0

B0

 Jm (κmnr) e
±imφ

 TM modes

TE modes
(4.10)

where

κmn =
1

b

 xmn

x′mn

≡ √µεωmn (4.11)

with the upper (lower) line corresponding to TM (TE) modes. Here ωmn is

the resonance frequency corresponding to the eigenvalue κmn of the Helmholtz

equation. For each value of κmn (and therefore of ωmn) one obtains a normal

mode solution for the longitudinal wave-number k,

k =
√
k2

0 − κ2
mn =

√
µε (ω2 − ω2

mn) (4.12)
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Consequently, if the driving frequency is above the cutoff (ω > ωmn), then

k is real and waves of mode (m,n) can propagate in the waveguide. Otherwise,

k is imaginary and so waves in that mode are damped. The case of a resonant

cavity of length ` corresponds to a waveguide with transverse conducting plates

introduced at its ends. Imposing this restriction, the z-dependences of the fields

become those appropriate for a standing wave. Applying the boundary conditions

at z = 0, ` we have that Ez

Bz

 = Ψ(r, φ)

 cos (kpz) (TM)

sin (kpz) (TE)

 (4.13)

where Ψ is the corresponding solution for the infinite waveguide of the same

cross-section, and kp is the (now quantized) longitudinal wave-number, with p

being the longitudinal mode number:

kp =
pπ

`
(4.14)

The oscillation freqency ω is now restricted to the discrete set of normal mode

frequencies ωmnp:

ωmnp =
1
√
µε

√
κ2

mn + k2
p (4.15)

The transverse fields are obtained from the longitudinal solutions via (for TM

modes),

Et = − kp
κ2

mn

sin (kpz)∇∇∇tΨ , Bt =
iεωmnp

cκ2
mn

cos (kpz) ẑ̂ẑz ×∇∇∇tΨ , (4.16)

and (for TE modes),

Et = −iµωmnp

cκ2
mn

sin (kpz) ẑ̂ẑz ×∇∇∇tΨ , Bt =
kp
κ2

mn

cos (kpz)∇∇∇tΨ . (4.17)
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For a cylindrical cavity, these expressions yield, for the TM modes,

Er = −E0kp
κmn

J ′m (κmnr) e
imφ sin (kpz) ,

Eφ = −iE0kp
κ2

mn

m

r
Jm (κmnr) e

imφ sin (kpz) ,

Ez = E0Jm (κmnr) e
imφ cos (kpz) , (4.18)

Br =
E0εωmnp

cκ2
mn

m

r
Jm (κmnr) e

imφ cos (kpz) ,

Bφ =
iE0εωmnp

cκmn

J ′m (κmnr) e
imφ cos (kpz) ,

Bz = 0 ;

and for TE modes,

Er = −B0µωmnp

cκ2
mn

m

r
Jm (κmnr) e

imφ sin (kpz) ,

Eφ = −iµB0ωmnp

cκmn

J ′m (κmnr) e
imφ sin (kpz) ,

Ez = 0, (4.19)

Br =
B0kp
κmn

J ′m (κmnr) e
imφ cos (kpz) ,

Bφ =
iB0kp
κ2

mn

m

r
Jm (κmnr) e

imφ cos (kpz) ,

Bz = B0Jm (κmnr) e
imφ sin (kpz) .

The general solution for the fields in a cylindrical pillbox cavity can be rep-

resented by a superposition of the TE and TM modes in the usual way. The

lowest-order mode with transverse fields capable of imparting a net transverse

deflection to an electron traveling along the axis of the structure is the TM mode

with m = 1, n = 1, and p = 0, which we denote TM110. The fields near the

center of the cells in a multi-cell deflecting structure closely resemble those of

the TM110 mode. In the next section, we therefore derive the fields of this mode

explicitly and obtain the limiting forms near the axis.
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4.3.2 On-Axis Fields for the Deflecting Mode

For acceleration, RF cavities are operated in the TM010 mode. In this mode, the

only surviving field components are

Ez = E0J0 (κ01r) , Bφ = iE0

√
ε

µ
J ′0 (κ01r) . (4.20)

For a deflecting cavity, we would like to have zero longitudinal electric field

and transverse fields on-axis which tend to produce a net transverse momentum

kick. The lowest-order TM dipole mode for this purpose is TM110. From the

results of the previous section, the fields for this mode have the forms

Ez = E0J1 (κ11r) e
iφ ;

Br =
E0εω110

cκ2
11

1

r
J1 (κ11r) e

iφ; (4.21)

Bφ =
iE0εω

cκ11

J ′1 (κ11r) e
iφ;

Dropping the subscripted indices on κ and ω for convenience and defining E ≡

E0εω/cκ, we have

Ez = E0J1(κr)e
iφ , Br = E J1(κr)

κr
eiφ , Bφ = iEJ ′1(κr)eiφ. (4.22)

All other field components vanish. Note that there is no transverse electric field

in this mode. Therefore any transverse deflection of the beam would have to be

due entirely to magnetic forces. (Note that in the multi-cell structure this is not

the case, as there is a nonzero transverse electric field in the iris region between

cells). For small values of the argument, we can expand the 1st Bessel function

and its derivative as follows:

J1(ξ)

ξ
=

1

2
− ξ2

16
+

ξ4

384
+ ... ; J ′1(ξ) =

1

2
− 3ξ2

16
+

5ξ4

384
+ .... (4.23)
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We then have (near the axis) the expressions

Ez =
E0

2
κreiφ , Br =

E
2
eiφ; Bφ = i

E
2
eiφ. (4.24)

Converting to cartesian coordinates, we have

Bx = Br cosφ−Bφ sinφ ; By = Br sinφ+Bφ cosφ

Ex = Er cosφ− Eφ sinφ ; Ey = Er sinφ+ Eφ cosφ. (4.25)

or

Ez =
E0

2
κreiφ ; Bx =

E
2

; By = i
E
2
. (4.26)

So at r = 0, the electric field vanishes and we have only the x and y magnetic

field components, which are out of phase by 90 degrees. Consequently, the on-

axis magnetic field vector is circularly polarized (i.e. rotates about the z axis

in time). This is to be expected from the cylindrical symmetry of the structure,

which prefers no particular transverse direction. In practice, a small asymmetry

may be introduced which couples more strongly to one transverse direction or the

other. This produces a mode-splitting whereby the two linear polarizations (x

and y) have different resonant frequencies. The desired polarization direction is

then selected by setting the driving RF frequency to match the correct resonant

value. The resulting fields of the separated polarizations (for deflections along

the x and y axes respectively) read:

x : Ez =
E0

2
κr cosφ ; Bx = 0 ; By =

E
2

(4.27)

y : Ez =
E0

2
κr sinφ ; Bx =

E
2

; By = 0. (4.28)

As we will see in Section 4.4, the technique used to separate the two polarizations

in the multi-cell deflecting cavity design for the Neptune laboratory will consist

of a pair of small holes penetrating the wall between adjacent cells.
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4.3.3 The Transverse Cavity Voltage

The transverse momentum kick imparted to a relativistic electron traversing a

pillbox cavity is approximately given by simply integrating the transverse force

along a linear trajectory z = z0 + ct at a distance r and angle φ relative to the

cylindrical coordinate system:

∆pt ' −e
c

∫ `

0

{Et + (v×B)t} dz = −i e
ω

∫ `

0

∇∇∇tEz dz (4.29)

where ` is the length of the cell and ∇∇∇t denotes the transverse gradient operator.

Equation (4.29) is known as the Panofsky-Wenzel theorem [63]. For a vertical (y)

deflection in the TM110 dipole mode, we have that the longitudinal electric field

is given by Eq. (4.28). Taking the transverse gradient of that expression gives us

∇∇∇tEz =
E0κ

2
eiωtŷ (4.30)

where we have reinserted the explicit harmonic time dependence. Inserting this

into Eq. (4.29) and taking the real part, the transverse momentum kick reads

∆pt = Re

[
−i e
ω

∫ `/2

−`/2
∇∇∇tEz dz

]
=
e

ω

E0κ

2
ŷ

∫ `/2

−`/2
sin

[
ω (z − z0)

c

]
dz (4.31)

Making the substitution of variables

ψ0 = −z0ω

c
, ∆ψ =

`ω

c
(4.32)

the integral yields

∆pt =
eE0

ω
sin(ψ0) sin(∆ψ/2) ŷ. (4.33)

Here we have used the fact that (for the TM110 mode) κ = k0 = ω/c. Note

that the value of ∆ψ is determined by the frequency and length of the cavity.

However, the value of ψ0 represents the phase arrival time of the particle at the

center of the cavity. If the design particle arrives at the phase ψ0=0 then it
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experiences no momentum kick and hence there is no offset of the beam centroid.

Particles which arrive before or after the design particle, however will experience

a transverse momentum kick that is approximately proportional to the z-position

of the particle within the bunch (since for small arguments sin ψ0 ' ψ0).

Let us define the voltage VT to be the voltage over which a particle would

acquire the transverse momentum whose magnitude was determined above:

∆pt =
e

c
VT . (4.34)

Hence,

VT =
cE0

ω
sin(ψ0)sin(∆ψ/2). (4.35)

This may alternately be considered the real part of the voltage phasor

ṼT = V0 e
i ψ0 , (4.36)

which has the magnitude

V0 =
∣∣∣ṼT ∣∣∣ =

cE0

ω
sin(∆ψ/2). (4.37)

The quantity V0 is typically referred to as the transverse cavity voltage. Note

that for the voltage to be maximized, we would like ∆ψ to be equal to an odd

multiple of π. This is equivalent to requiring that the overall cavity length ` be

equal to an odd multiple of half the RF wavelength:

` =
λ

2
,
3λ

2
,
5λ

2
, ... (4.38)

Note that Eq. (4.37) may alternately be written (see e.g. Ref. [64])

V0 =
E0`

2
T ; where T ≡ λ

π`
sin(∆ψ/2),

where the quantity T is referred to as the time transit factor.
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Power Coupling to the Cavity

Suppose we have a cavity that is initially driven by an external RF generator,

which is coupled to the cavity by a waveguide and a coupling slot. If the source

is suddenly switched off, then the energy stored in the cavity will dissipate due

to losses. The total power being lost is then given by

Ptot = Pw + Pc (4.39)

where Pw is the power lost in the wall of the cavity and Pc is the power that

escapes by returning out through the coupling slot. We can define the external,

resonant, and loaded quality factors:

Qe =
ω0U

Pc
; Q0 =

ω0U

Pw
; QL =

ω0U

Ptot

(4.40)

From these relations we then see that the quality factors satisfy the reciprocal

addition rule
1

QL

=
1

Q0

+
1

Qe

(4.41)

The coupling of the power into the cavity may then be characterized by a

coupling parameter βc which is defined by

βc =
Qe

Q0

=
Pw
Pc

(4.42)

Consequently, βc=1 corresponds to the case Pc=Pw. This indicates that the

stored energy is emitted by the coupler at the same rate that it is absorbed by

the cavity walls. If the cavity is instead driven in a steady state at its reso-

nance frequency, then a fraction |Γ|2 of the power Pin that is incident upon the

input coupler from the external waveguide is reflected, where Γ is the complex

reflectance. The power Pw transmitted into the cavity is then

Pw = Pin(1− |Γ|2) , where |Γ| =

 (1− βc)/(1 + βc) , βc ≤ 1

(βc − 1)/(βc + 1) , βc ≥ 1
. (4.43)
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The above relation between Γ and βc is derived in Ref. [65], among others.

Consequently, with a coupling βc of unity, when the cavity is driven in steady

state all input power is transmitted into the cavity with zero reflections. It can be

shown that under these conditions the stored energy in the cavity is maximized

and the cavity acts like a perfectly matched load. In microwave circuit theory, the

load mismatch of a terminated line is measured by the so-called voltage standing

wave ratio or VSWR, which is related to the magnitude of the reflectance Γ by

VSWR = (1+|Γ|)/(1−|Γ|) [66]. Hence, the coupling parameter may be expressed

as

βc =


1/VSWR , (undercoupled)

VSWR , (overcoupled)

1 , (matched)

. (4.44)

This expression is useful, because it is common practice in the accelerator com-

munity to express the coupling in terms of βc, but the VSWR is what is generally

measured empirically.

4.3.4 Calculation of the Q and Power Loss

We wish to relate the power requirement for the TM110 mode of a pillbox cavity to

the quality factor Q0 and the deflecting voltage V0. The square of the deflecting

voltage and the power are generally expressed relative to each other by defining a

shunt impedance R̃s in analogy with circuit theory. The quality factor and shunt

impedance are given by

Q0 = ω0
U

Pw
, R̃s =

V 2
0

Pw
, (4.45)

where ω0 is the resonant frequency of the given mode, U is the time-averaged

energy stored in the cavity, and Pw is the power loss in the walls of the cavity.

For a pillbox cavity of length `, the stored energy of a TM mode is given by
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[67]

U =
ε`

4

{
1 +

(
pπ

κmn`

)2
}∫

S

|Ψ|2dS ×

 1 p 6= 0

2 p = 0
(4.46)

where S is the cross-section of the cavity and Ψ is the solution to the Eq. (4.6).

For the TM110 mode, the solution is given by

Ψ = E0J1(κr) cos(φ). (4.47)

Hence, ∫
S

|Ψ|2dS = E2
0

∫ 2π

0

∫ b

0

J2
1 (κr)r cos2(φ)dr dφ (4.48)

=
E2

0a
2π

2

{
J2

1 (κb)− J0(κb)J2(κb)
}

Noting that κb = x11 = 3.832 is the first zero of J1 and that J2(x11)=-J0(x11)=0.403

we have that the stored energy is given by

U = E2
0πb

2 ε`

4
J2

2 (κb). (4.49)

The power loss for TM modes is given by [67]

Pw =
ε

σδµ

{
1 +

(
pπ

κmn`

)2
}1 +

 ξ

2ξ

 C`

4A

∫
S

|Ψ|2dS (4.50)

where the upper (lower) line is for p 6= 0 (p = 0), ε and µ are the dielectric

constant and magnetic permeability, ξ is a geometrical factor of order unity, and

δ and σ are the skin depth and conductivity of the conducting boundary. So for

the TM110 mode, we have (ξ=1 for TM modes in a circular cavity)

Pw =
ε

2σδµ

(
1 +

`

a

)
E2

0πb
2 J2

2 (κb) (4.51)

This expression for the power may be recast in terms of the deflecting voltage V0

by using Eq. (4.37) to replace E0:

Pw =
εω2

2σδµ c2
π
a2(1 + `/b)

sin2[∆ψ/2]
J2

2 (x11)V
2
0 . (4.52)
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Table 4.1: Comparison of Pillbox Parameters for Different Frequencies

Parameter Units S-Band X-Band X-Band

f GHz 2.856 11.424 9.6

λ cm 10.4 2.62 3.1

` cm 5.2 1.31 1.56

b cm 6.4 1.6 1.9

δ µm 1.22 0.614 0.670

Q0 - 23473 11735 12803

R̃s kΩ 1505 752 821

Vmin kV 593 148 176

V0 kV 1780 444 529

Pw kW 2103 263 341

Using the relations for the power loss and stored energy, Eqs. (4.49), (4.51)

and (4.52), we can now write explicit expressions for the quality factor and the

shunt impedance:

Q0 =
µ

µc

`

δ

1(
1 + `

b

) (4.53)

R̃s =
2σδµ c2

εω2

sin2[∆ψ/2]

πa2(1 + `/b) J2
2 (x11)

(4.54)

where µc = δ2ωσ/2 is the magnetic permeability of the conducting boundary.

In Table 4.1 we use these formulas, combined with Eq. (4.4) for the minimum

cavity voltage Vmin to calculate the quality factor and input power for three

different frequencies. The assumed drift length is L = 43.3 cm, and the beam

energy is taken to be 12 MeV (both of these being reasonable values for the

Neptune beamline). The voltage V0 is taken to be three times the minimum

voltage (V0 = 3Vmin), implying the minimum deflecting voltage can be achieved
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with a power level a factor of 9 below those given in Table 4.1. Note that in this

regard one must consider losses in the waveguides when specifying the needed

power levels from the RF sources.

The RF frequencies considered in Table 4.1 correspond to three possible

sources of high power RF which were under consideration at the time the UCLA

deflecting cavity was in the preliminary design stages. The value of 2.856 GHz is

the standard high-power RF frequency used at the Stanford Linear Accelerator

Center (SLAC) and is the resonant frequency of the UCLA Neptune photoin-

jector gun and linac. The second value of 11.424 GHz represents the standard

X-Band SLAC frequency. The third value (9.6 GHz) represents the approximate

frequency of a commercially available 50 kW (peak power) refurbished military

klystron from Radio Research Instruments. The first two options would have

required (respectively) either siphoning off RF power from the 20 MW S-Band

klystron used to drive the gun and linac at the Neptune laboratory, or acquiring

an X-band klystron from SLAC. As the first of these options would have entailed

difficult and costly modifications to the Neptune high-power RF waveguide sys-

tem, and the second was not feasible, it was decided to purchase the 9.6 GHz

klystron and to design the deflecting cavity to match its output frequency and

power capability. Therefore, henceforth we will use f =9.6 GHz and Pmax = 50

kW as our rule-of-thumb operating frequency and peak power level.

4.4 The Multi-Cell Design

By combining multiple cells in series, the overall impedance of the deflecting

structure can be increased, thereby reducing the input power required to achieve

the same net deflecting voltage. The cells are electromagnetically coupled by

holes or gaps in the walls separating them, which include, at the minimum, a
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central iris through which the electron beam may pass.

A structure of this type may also be regarded as a waveguide loaded with pe-

riodically spaced disks (hence it is sometimes referred to as a disk-loaded waveg-

uide). A traveling wave propagating in a simple waveguide (i.e. in the absence

of loaded disks) must have a frequency above the cutoff, and therefore its phase

velocity vφ = ω/k is greater than c, as required by Eq. (4.12). This would make

it impossible for an ultrarelativistic beam to remain in phase with the wave. The

inclusion of the periodic disks effectively slows the phase velocity of the propa-

gating wave to that of light.

Due to the periodicity of the structure the electromagnetic fields can be made

to satisfy the Flouquet condition, whereby the field at the center of one cell is

equal to that at the center of another cell located an integer number of cell-

spacings downstream. This may be written E(z) = E(z + jd) where j is an

integer and d is the distance from the center of one cell to the next. For a

finite number N of cells, the allowed Flouquet phase shifts are then given by

∆φn = π(n − 1)/(N − 1) where n = 1, 2, 3, . . . , N . These discrete values for

the cell-to-cell phase shift correspond to an N -fold degeneracy of the single-cell

cavity mode produced by the coupling of the cells, with a resultant splitting

of the single-cell resonant frequency into a set of N distinct mode frequencies.

These modes are analogous to the normal modes of a chain of coupled oscillators.

In fact, the mode behavior and dispersion relation of a multi-cell cavity can be

calculated using a lumped-element circuit model of the structure as a chain of

coupled resonators. This methodology is outlined in the following section.
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Figure 4.2: Equivalent circuit diagram for a chain of coupled cavities.

4.4.1 Circuit Theory of a Chain of Coupled Cavities

A fairly general circuit model for multicell cavities is given by Nagle, et al. [68].

This model is generalized by Yi, et al. [69], who also provide a block diagram

of a possible C+ algorithm for solving the equations. In this model, a multicell

RF cavity is represented by a circuit of the form shown in Fig. 4.2. The figure is

shown with the input power coupler located on the p’th cell, although additional

couplers could be included as well.

The quantities Ln and Cn denote the inductance and capacitance of each

oscillator, and 2κn is the coupling between cell n and cell n + 1. For inductive

coupling, κn is negative and for capacitive coupling it is positive. The resultant

circuit equations relating the voltage Vn and current In of cell n are

V1 = I1

(
iωL1 +R1 +

1

iωC1

)
+ iωκ1

√
L1L2I2,

Vn = In

(
iωLn +Rn +

1

iωCn

)
+ iω

√
Ln

(
κn−1In−1

√
Ln−1 + κnIn+1

√
Ln+1

)
, (4.55)

VN = In

(
iωLN +RN +

1

iωCN

)
+ iωκN−1

√
LN

(
IN−1

√
LN−1

)
.
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Defining the quantities

Xn =
√
LnIn , Qn = ωn

Ln
Rn

, ωn =
1

2π
√
LnCn

, (4.56)

Eqs. (4.55) may be cast into the form of a matrix equation,

A ·X = V, (4.57)

where

A =



a1 κ1 0 · · · 0

κ1 a2 κ2 · · · 0

0 κ2 a3 · · · 0
...

...
...

. . .
...

0 0 0 κN−1 aN


, X =



X1

X2

X3

...

XN


, V =



V1

V2

V3

...

VN


. (4.58)

The diagonal elements of A are given by

an = 1− ω2
n

ω2
− i

ωn (1 + βn)

ωQn

. (4.59)

where βn is a measure of the local coupling in cell n to the excitation voltage Vn.

If, as is shown in the example circuit of Fig. 4.2, there is a single input coupler

located on the p’th cell, then βn would be zero except for n = p. The Qn and ωn

values represent the monocell quality factor and resonant frequency respectively.

The quantity Xn is the normalized current in circuit n, representing the complex

field amplitude in the n’th cell. If the quantities ωn, Vn, Qn, Xn, βn, κn are

known for all N cells, then Eqn. (4.57) may be solved to obtain both the complex

fields Xn and the eigenfrequencies. The fields as a function of ω are obtained by

simply inverting the matrix A:

X(ω) = A−1(ω) ·V (4.60)
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Figure 4.3: Example plots of the dispersion relations for (a) a for-
ward-wave and (b) and backward-wave 9-cell structure.

The eigenfrequencies can be obtained by solving the homogeneous equation

A ·X = 0. This produces the requirement det(A) = 0, which forms a polynomial

equation for ω, with N distinct solutions, which we will denote 2πfn where n =

1, 2, 3, . . . , N . These solutions correspond to the allowed Flouquet phase shifts

∆φn = π(n− 1)/(N − 1). For the case where all of the cells are identical, having

the same single-cell frequency and inter-cell couplings (i.e. ωn = 2πf0 and κn = κ

for all n) then the dispersion relation takes the simple form [68]

fn =
f0√

1 + 2κ cos(∆φn)
; n = 1, 2, 3, . . . , N. (4.61)

The width of the passband and the frequency of the π-mode are then given by

∆f = f0

∣∣∣∣ 1√
1− 2κ

− 1√
1 + 2κ

∣∣∣∣ , fN =
f0√

1− 2κ
. (4.62)

In Fig. 4.3, Eq. (4.61) is plotted for a single-cell frequency of f0 = 9.6

GHz and a coupling coefficient of magnitude |κ| = 0.014. The plot in part (a)

corresponds to the case where κ > 0 and the cell-to-cell coupling is primarily

capacitive. The group velocity in this case is positive and the structure is called

a forward-wave structure. The plot in part (b) for κ < 0 corresponds to a

primarily inductive cell-to-cell coupling, which results in a negative group velocity.
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A multi-cell cavity with a dispersion relation of this form is therefore called a

backward-wave structure. We make this distinction because the strong magnetic

component to the deflecting voltage in a multi-cell deflecting cavity tends to

produce a predominantly inductive cell-to-cell coupling. And in fact our final

design for the 9.6 GHz cavity will be a backward-wave device.

4.4.2 Traveling vs. Standing Wave Cavities

The multi-cell cavity, or disk-loaded waveguide, may be classified as either a

traveling or standing wave device, depending upon whether the fields excited in

the structure have only an eikz or e−ikz dependence, or a superposition of the

two. The distinction is largely dependent upon the manner in which power is

coupled into and out of the cavity. If all of the cells are fed by a single central

coupler as in Fig. 4.4(a) then the power is reflected at the ends of the cavity and

a standing-wave is formed. On the other hand, if the power is coupled in at one

end of the structure and then coupled out at the other, as in Fig. 4.4(b) then no

such reflection occurs and the device is called a traveling wave cavity. It should

be noted, however, that a traveling wave structure can also be constructed with

no net power flow along the device by powering each cell separately.

Generalizing from the usual results for multi-cell accelerating cavities (see for

example Ref. [70]), the transverse deflecting voltage is related to the input power

by a relation of the form

V0 = K
√
P0r̃sL (4.63)

where L is the total length of the structure, r̃s is the shunt impedance per unit

length, and K has the following forms for traveling waves (TW) and standing
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Figure 4.4: Examples of a standing-wave (a) and a traveling-wave (b)
multi-cell structure with power vs. frequency plots.

waves (SW) respectively:

K =


√

2τ [ (1− e−τ )/ τ ] ; TW[
(tanh τ/2)

/
1
2
τ
]1/2

(1 + e−2τ )
−1/2

; SW
(4.64)

and τ is the attenuation factor for traveling waves in the structure, given by

τ =
Lω

vgQ0

=
L

δ
; where δ =

vgQ0

ω
(4.65)

Here vg is the traveling wave group velocity. Below we plot K for both cases

as functions of τ . We see that for τ < 1 the standing wave structure produces

a stronger deflection. The value for τ which maximizes the value of K for the

traveling wave case is approximately τ=1.26. At this value of τ , we can see

from the plot that the two curves are fairly close together and are approximately

Kmax'0.9.
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Figure 4.5: Plot of K vs. τ for standing wave (dashed) and traveling
wave structures (solid).

If we assume a constant impedance structure, then r̃sL = nR̃s where R̃s is

the shunt impedance for one cell and n the number of cells. Then for τ near the

optimal value of 1.26, K ≈1 and we have

V0 '
√
PcavnR̃s =⇒ Pcav '

V 2
0

nR̃s

=
Pw

n
(4.66)

The required input power Pcav is therefore approximately the single-cell value

divided by the number of cells. The primary benefit of the TW over the SW

structure is that a TW structure can maintain a larger mode separation for a

longer cavity length. So, for very long cavities (> 10 cells), a TW structure is

preferred. However, fewer cells are generally desirable in order to improve the

field flatness and avoid trapped modes. Since standing wave cavities tend to have

only a few cells, power can be coupled into them only at a few discrete frequency

values, corresponding to the normal mode frequencies in Eq. (4.61), as shown

in Fig. 4.4(a). For traveling wave structures, with tens (or hundreds) of cells,

these discrete resonances begin to overlap and thereby create a semi-continuous
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passband, which is illustrated in Fig. 4.4(b). The presence of this continuous

passband for the traveling wave case is also aided by the fact that the output

coupler is generally terminated with a matched load, which causes the structure

to appear infinitely long with respect to the power coupling at the input. Since

the single-cell power requirement (341 kW) for the 9.6 GHz case, as indicated

in Table 4.1, exceeds the peak power of the available source (50 kW) by only a

factor of 7, a standing wave cavity is feasible for this design.

4.4.3 Estimated Power and Resolution

The achievable temporal resolution of a deflecting cavity is ultimately limited, in

accordance with Eq. (4.3), by the minimum spot size σ0 that can be achieved on

the downstream imaging screen when the deflecting cavity is turned off. This can

be seen by noting that according to Eq. (4.1) the relation between a particle’s

arrival time t = −z/c and its vertical position y on the deflector screen is given

by

t =
y0 − y

cM̂
, (4.67)

where we have taken the phase to be ψ0 = 0. However, in reconstructing the time-

distribution from the image on the deflecting screen, the initial and deflected

positions y0 and y of individual particles are not known. What is measured

instead is a projection of the phase space distribution onto the vertical coordinate.

Therefore, in reconstructing the longitudinal profile of the beam using Eq. (4.67)

the value y0 must be neglected. There is then, on average, an ambiguity of

〈y0〉 = σ0 in the reconstructed longitudinal position of the portion of the beam

located at the deflected position y.

If the initial spot size is neglected then the time resolution is limited by

the deflecting voltage and the resolution of the screen and camera optics used to
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Figure 4.6: Time resolution vs. power for n pillbox cells in series.

digitize the final y-distribution. Taking the cavity to consist of n identical pillbox

cells in series, we will approximate the total shunt impedance by nR̃s where R̃s is

the shunt impedance per cell as given by Eq. (4.54). The total deflecting voltage

is thus approximately

V0 ≈
√
nR̃sPcav (4.68)

where Pcav is the total input power required. Thus, for a fixed value of the

deflecting voltage, the input power scales as Pcav ≈ Pw/n where Pw is the single-

cell input power as given by Eq. (4.52). Now, let ∆x represent the distance on

the final deflector screen corresponding to a single pixel in the digitized image, as

viewed using a camera and whatever collecting optics are present. The smallest

beam size ∆z = c∆t which can be resolved then is the value which results in a

deflection ∆y = M̂∆z. Hence, the best achievable time resolution in this case is

∆t =
∆yU/d

Lπf
√
R̃snPcav

. (4.69)

Equation (4.69) is plotted in Fig. 4.6 as a function of total power Pcav for dif-
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ferent numbers n of cells, for an RF frequency of 9.6 GHz and a screen resolution

of ∆y = 30 µm (a typical value for the camera and screen setups in the Neptune

lab). Only odd values of n are considered because a standing-wave center-fed

cavity can by definition have only an odd number of cells. As was noted in Sec-

tion 4.3.4, the maximum power available from the X-band power source is 50 kW.

Furthermore, from Table 4.1 we see that the single-cell power required at 9.6 GHz

to obtain a suitable deflecting voltage was approximately 7 times the available

peak power, suggesting that the cavity should be designed to incorporate at least

7 cells. However, in order to further reduce the power requirements of the cavity

and to ensure that there would be sufficient deflecting voltage to make the desired

measurements, a 9-cell design was decided upon. The commercial RF modeling

code HFSS 9.2 was then used to finalize the design, and the particle tracking code

ELEGANT was used to simulate the effect of the cavity on the electron beam.

4.5 Simulations of the 9-Cell Cavity

The computer-aided design of the UCLA Neptune deflecting cavity was a three-

year endeavor, which proceeded simultaneously with the construction and testing

of two prototypes (as well as the final cavity), included two changes in the design

frequency of the structure (due to unexpected hardware limitations of the RF

power source), and involved experimentation with a number of design features

that were later abandoned or significantly modified.

However, our goal here is to present the basic methodology of the computer-

aided design process in a compact and thematically (rather than chronologically)

organized fashion. We will therefore overview the computer modeling of the

final cavity design in a bottom-up approach, neglecting to mention a variety

of interceding design changes and modifications that would likely serve only to
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Table 4.2: Basic Design Parameters for Deflecting Cavity

Frequency 9.59616 GHz

Flouquet mode π-mode

Number of cells 9

Peak input power 50 kW

Coupler type central coupler

Deflecting Voltage 529 kV

distract the reader. We will begin with a description of the eigenmode design and

definition of the main geometrical parameters, and then proceed to the simulation

of more advanced design features, such as the input coupler and the inclusion of

holes in the walls between cells to separate the orthogonal polarization modes

discussed at the end of Section 4.3.2.

For the purposes of the following discussions, we will take as our starting

design parameters those which are shown in Table 4.2. These are in fact the basic

design characteristics of the UCLA Neptune deflecting cavity, and are consistent

with the discussions and justifications provided by our comments in Section 4.4.

The deflecting voltage is that given in Table 4.1. The frequency shown (which

differs slightly from the previously assumed 9.6 GHz) is derived from the 252nd

harmonic of the drive laser oscillator frequency (38.08 MHz) since this was used as

the reference RF signal. The reasoning for this frequency choice will be explained

in more detail in Section 4.6.1.

4.5.1 Description of the Modeling Code: HFSS 9.2

The code used to design the 9-cell deflecting cavity for the Neptune Laboratory

was the commercial RF modeling software package HFSS version 9.2 by Ansoft
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Corporation. This software uses the finite element method (FEM) to calculate

harmonic electric and magnetic fields in a high-frequency electromagnetic struc-

ture. The geometry of the electromagnetic structure to be modeled is created

using a computer-aided design or CAD-like graphical user interface. The adap-

tive grid on which the solution is performed is then generated automatically

based upon the user-specified geometry, although the fineness of the mesh may

be specified by the user on any or all of the surfaces in the model. Solutions

may be performed using an eigenvalue solver, which computes the eigenfrequen-

cies and associated eigenmode fields in the structure, or using a excitation-based

driven modal solver whereby the user defines an excitation on one or more port

boundaries and then the resulting fields are calculated inside the structure.

Both solution methods are highly valuable in the design process. The first

permits a quick way of tracking the behavior of the eigenmode frequencies under

modifications of the cavity geometry, while the second provides a more complete

but computationally intensive solution of the fields and impedance properties

of the structure, including the transmittance and reflectance at the port(s). In

addition, idealized boundary conditions (perfect electric, perfect magnetic) may

be imposed on surfaces, different materials can be specified for the composition

of the cavity and its interior volume, and symmetry planes may be introduced to

reduce the computation time.

4.5.2 Eigenmode Solutions

Prior to designing the input power coupler, the basic mode structure of the cavity

was explored using the eigenmode solver. The cavity geometry is shown in Fig.

4.7, which depicts a cross-section of the half-cavity in the x-z plane. Only a

quarter of the structure is modeled in the simulation, as symmetry planes have
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Figure 4.7: Geometry of the half-structure for the eigenmode solver.

been defined to reduce the computational volume. A perfect electric boundary

is defined on the downstream x-y cross-section which defines the midplane of

the center cell, and a perfect magnetic boundary is defined on the surface which

bisects the cavity in the x-z plane (i.e. the plane of the page).

Note that a beam pipe of length Lp has been included, as well as circular

irises of radius a and width t connecting the individual cells. The radii on the

edges of the irises are set to t/2 so that the surface has no sharp edges. The iris

radii were chosen to be sufficiently large to provide an adequate aperture for the

electron beam. The value of the cell-to-cell spacing d is constrained by the RF

wavelength of the design frequency and the Flouquet phase shift of ∆φ = π to

satisfy d = λ/2 = 15.62 mm (for a π-mode frequency of 9.59616 GHz). With all

of the cell radii set to the same value b1 = b2 = b3 = b4 = b5 = b, the simulated

eigenmode frequencies should be approximated by the dispersion relation given

in Eq. (4.61). This comparison is made in Fig. 4.8. The cavity dimensions used

in this simulation are shown in Table 4.3, where the simulated eigenmodes are

plotted in superposition with the dispersion curve for a cell-to-cell coupling of

143



Figure 4.8: Comparison of simulated eigenfrequencies (dots) with the
curve predicted by Eq. (4.61).

κ = −0.014. The value of the cell radius b has been chosen so that the π-mode

frequency is equal to the desired 9.6 GHz.

For a 9-cell deflecting cavity, there should in principle be 9 eigenmodes corre-

sponding to the TM110-like mode of the single-cell geometry. However, in Fig. 4.8

we see that only 5 eigenmodes appear. This is due to the perfect electric boundary

condition imposed at the midplane, which supresses any modes having a field-null

at the midplane of the cavity. Recalling that, for a 9-cell structure, the allowed

Table 4.3: Dimension values corresponding to the plot of Fig. 4.8

Dimension Value Units

b 18.27 mm

a 5 mm

t 3 mm

d 15.62 mm

Lp 15 mm
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Flouquet modes are ∆φn = π(n − 1)/8, we have then that the supressed modes

are those corresponding to n = 2, 4, 6, and 8 or ∆φ = π/8, 3π/8, 5π/8, and 7π/8.

The mode suppression imposed by the boundary condition on the midplane is not

unphysical, however, because the eventual inclusion of a central power coupler on

the middle cell of the cavity will produce the identical form of mode supression,

as we will see in Section 4.6.3.

Note also from Fig. 4.8 that the dispersion curve corresponds to that of a

backward-wave structure, as the group velocity is negative (except at ∆φ = 0, π

where it is zero). It may therefore be compared with the plot of Fig. 4.3(b).

However, there is a relative offset in frequency between the two plots due to the

fact that the monocell frequency was set to 9.6 GHz in Fig. 4.3. In the present

simulation, the monocell frequency has been effectively increased by reducing the

cell diameter b, in order to match the lowest-frequency (π) mode to the desired

9.6 GHz.

4.5.3 Input Coupler Design

Power is coupled into the cavity by way of a coupling aperture introduced into

one or more cells, which connects the interior volume of the cavity to that of

an external waveguide which carries RF power from the generator. For a 9-cell

standing-wave structure, a single coupling iris on the center cell is the simplest

solution. In principle, the coupler could be located elsewhere but this would

disrupt the cavity symmetry, making the design and simulation of the structure

unnecessarily difficult. Figure 4.9 shows the simulation geometry for a coupling

iris of width 2w, length 2l, corner radius r, and depth db located on the center cell

of the cavity. Note that because of the symmetry boundaries in the simulation,

only a quarter of the structure is shown. Consequently, the dimensions l and w
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Figure 4.9: Geometry of the input coupler design for the HFSS simu-
lation.

shown in Fig. 4.9 correspond to the half-length and half-width of the coupling iris

respectively. The cross-sectional dimensions of the rectangular waveguide section

are set to correspond to those of the standard size of waveguide (WR-90) for this

frequency range: 0.4”×0.9”, or 10.16 mm×22.86 mm.

The geometry of the coupling iris affects the electromagnetic properties of

the structure in several ways: (1) it determines the coupling parameter βc of the

cavity, (2) it alters the monocell frequency of the center cell and thus changes the

π-mode frequency of the structure, and (3) it affects the relative amplitudes of

the fields in adjacent cells (i.e. the field balance). Consequently, simultaneously

optimizing the coupling (βc = 1), and maintaining both the field balance and the

correct π-mode frequency in the simulation requires a series of iterations over the

size of the coupling iris and the radii (b1, b2, . . . , b5) of the cells.

If only the diameter of the center cell (cell 5) is reduced in order to compensate

for the lowering of the resonant π-mode frequency produced by the introduction

of the coupling iris, there is a marked fall-off in the field strength progressing
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Table 4.4: Cavity and coupling iris dimensions for the field-balanced driven modal
simulation.

Dimension Value Units

b1 18.4774 mm

b2 18.25 mm

b3 18.3462 mm

b4 18.25 mm

b5 18.25 mm

a 5 mm

t 3 mm

d 15.62 mm

Lp 15 mm

w 2.54 mm

l 4.22 mm

db 1.283 mm

r 0 mm

from the central cell out towards the end-cells. In order to create a more uniform

field balance, the impedances of the cells must be gradually increased as one

progresses from cell 5 towards cell 1 (and likewise from cell 5 towards cell 9).

This may be accomplished by increasing the cell diameters in a tapered fashion

from the central cell outward. However, in order to simplify the design process,

the radii of all cells were reduced (with the same values) and then the radii of cells

1 and 3 were varied to balance out the fields. This process was iterated many

times with small adjustments in the width of the coupling iris l to eventually

produce the values shown in Table 4.4.
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Figure 4.10: Plots of axial (a) electric field, (b) magnetic field, and (c)
field gradient as functions of position along the cavity axis.

The simulated transverse electric and magnetic field components along the

axis of the structure, corresponding with the cavity and iris dimensions of Table

4.4 and an input power of 50 kW, are shown in Fig. 4.10(a) and (b) respectively.

Note that the on-axis fields Ex(z) and By(z) in these plots are out of phase by

π/2. Thus, the transverse force experienced by an electron traveling along the

axis of the structure is given by

Ft = Re
{
[Ex(z)e

−iπ/2 − vBy(z)]e
−iωz/c} . (4.70)

This force is plotted in Fig. 4.10(c). Note that because of the π/2 phase difference

between the electric and magnetic fields the electric fields in the iris actually

contribute to the transverse deflection. Integrating under the curve in Fig. 4.10(c)

gives us the simulated transverse deflecting voltage. The resulting value of V0, as

well as the simulated coupling βc, π-mode frequency, and total shunt impedance

are shown in Table 4.5. Note that the corner radius of the coupling iris slot

in these studies was taken to be zero. The case of a nonzero corner radius is

considered in the next section.
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Table 4.5: Simulated cavity parameters for optimimized cavity and coupling iris
dimensions.

Parameter Value Units

Pin 50 kW

V0 528 kV

R̃tot 5.6 MΩ

βc 1.028

Q0 13710

fπ 9.5977 GHz

4.5.4 Polarization Holes and Coupling Iris Corner Radius

In principle, the presence of the central coupler breaks the azimuthal symmetry

of the cavity and thereby creates a preferred polarization of the deflecting fields

(the direction of the deflecting force being along the transverse symmetry line

of the coupler). However, the presence of small asymmetrical machining errors

in the construction of the cavity can cause a rotation of the polarization vector

from cell-to-cell. Such a rotation would cause the direction of the transverse

deflecting force seen by the beam to change as it travels through the cavity,

thereby producing a distortion of the streaked image on the downstream profile

monitor.

One solution to this problem is to try to eliminate any asymmetric machining

errors, guided by measurements made using a pair of sampling couplers built

into the cavity, each of which couples only to one polarization mode or the other.

Another possibility is to introduce into the structure an intentional asymmetric

feature which couples strongly to the undesired polarization mode but not to the
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Figure 4.11: Plots (a) electric and magnetic field magnitudes in the
transverse center plane of a cell, (b) the rod geometry at a junction
between cells, and (c) the hole geometry.

desired one. The resonant frequency of the undesired mode is thereby shifted so

that it is no longer excited by the driving RF. Commonly employed techniques

for this include the introduction of carefully placed rods, holes, or grooves into

the interior of the structure, in locations where the resulting perturbation of the

conducting boundary is strongly coupled to the fields of the undesired polarization

mode, but not to the desired one.

For the present case, we studied the use of both rods and holes, symmetrically

placed on either side of the irises between adjacent cells at a distance Rp from the

axis and having radius rp. The HFSS model geometries for a single monocell with

holes and rods respectively are depicted in Fig. 4.11(b) and (c). The placement

of the holes and rods as shown in Fig. 4.11 corresponds to a perturbation of

the undesired mode. This is seen by observing the field intensity plots in part

(a) of Fig. 4.11, which shows that the depicted hole/rod positions are close to

magnetic field maxima, and therefore their presence will strongly perturb the

monocell frequency. Rotating the the azimuthal positions of the holes or rods by

90 degrees about the z-axis would place them on a magnetic field null, where the
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Figure 4.12: Plots of resonant pi-mode frequency for a pair of (a) holes
and (b) rods of radius 2 mm, as a function of radial position. The
curves are polynomial fits, with the dashed curves representing the
desired polarization mode, and the solid curves the undesired mode.

frequency perturbation would be less. This scenario would then represent the

effect of the holes or rods on the desired polarization mode.

The π-mode frequencies for the two polarizations were simulated in this man-

ner using the eigenmode solver for both holes and rods of a fixed diameter of rp

= 2 mm, as the radial position Rp was varied from 10 to 14 mm. The results are

shown in Fig. 4.12 for (a) holes and (b) rods. From these plots we can see that

the perturbative effect of the rods on the monocell frequency is greater than that

of the holes by 2 orders of magnitude (i.e. on the order of hundreds of MHz as

opposed to a few MHz).

For a standing wave cavity with discrete resonances, it is sufficient to separate

the two polarization mode frequencies by an amount that is on the order of the

width of the resonance, or about 1 MHz. The holes are therefore adequate for our

purposes as well as being less difficult to manufacture than the rods. From Fig.

4.12(a) we see that the desired mode (dashed curve) is less strongly perturbed

as the holes become more distant from the center of the structure. Hence, we

151



Figure 4.13: Plots of resonant pi-mode frequency for a pair of holes
located a distance 14 mm from the axis as a function of hole radius.
The dashed (solid) curve is for the desired (undesired) polarization
mode.

choose the outermost position (Rp = 14 mm) and examine variations in mode

frequency as the hole diameter rp is varied. The resulting eigenmode simulation

results are shown in Fig. 4.13.

Note that the curves in Fig. 4.13 are interpolations of the simulation data. For

a pair of 2 mm diameter holes (i.e. rp = 1 mm) the simulated mode separation is

0.94 MHz, which is the approximate width of the π-mode resonance. We therefore

chose this as the design value for the polarization separation holes. Note that the

simulations which produced the plots in Figs. 4.12 and 4.13 were conducted for

a single monocell using the eigenvalue solver.

The polarization holes as well as the effect of nonzero corner radii on the

coupling iris were then incorporated into the full 3D model using the driven

modal solver with an excitation on the input waveguide port. The iris corners

were given nonzero radii because it was decided that sharp corners on the input

coupler should be avoided to prevent electrical breakdown in the actual cavity,

and because it would simplify the process of tuning the input coupling of the
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Figure 4.14: Plots of simulated coupling beta for two different coupling
iris radii vs the half-width of the coupler.

cavity. Simulations were conducted for two different corner radius values r =

0.075” = 1.905 mm and r = 0.0625” = 1.5875 mm as the half-width l of the

iris was varied. The simulated coupling beta values are shown in Fig.4.14. The

point corresponding to the final design model is marked by a circle, corresponding

to r = 1.5875 mm and l = 4.2754 mm. The simulated resonant frequency for

these dimensions was found to be 9.6006 GHz. The cavity was intentionally

undercoupled by design, because the tolerances specified on the machining of the

cavity cell diameters was always set to negative values so that their frequencies

would come out slightly high (by a few MHz). This way, the final frequency tuning

could be accomplished by raising and regulating the temperature of the cavity.

However, the increase in cavity temperature would also increase the coupling beta

by a few percent. Thus the nominal beta value was set by design to slightly less

than unity.
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4.6 Hardware and Construction

The UCLA Neptune deflecting cavity was constructed with the goal of providing

a robust, functional diagnostic for the Neptune laboratory which could be easily

moved to other locations (either on the Neptune beamline or elsewhere) and

which would be simple to tune, assemble, and install. The goals of simplicity of

installation and transportation are aided by the choice of a high frequency (and

hence small wavelength) compact portable power source. In the following sections

we outline the layout of the RF system used to drive the cavity, its mechanical

construction, and the experimental results of its testing and tuning.

4.6.1 RF Power and Hardware Layout

The ultimate source of the RF for all of the cavities on the UCLA Neptune

beamline (gun, linac, deflector) is a 38.08 MHz signal generated by the crystal

oscillator in the mode-locker driver for the Nd:YAG photocathode drive laser

(model Antares 76-S by Coherent). Phase-locked dielectric resonating oscillators

(PLDRO’s) are used to frequency multiply this base signal by 75 and 252 to gen-

erate the 2.856 GHz and 9.59616 GHz low-level reference signals that ultimately

drive the gun/linac and deflecting cavities respectively. The layout of the RF

system is shown as a block diagram in Fig. 4.15.

The output of the drive laser is modulated at twice the 38.08 MHz oscillator

frequency, producing a 76.16 MHz pulse train of 1064 nm infrared laser light.

Every 1/5 second, one of these pulses is selected by a regenerative amplifier to

be amplified (by 106) and upshifted twice in frequency, eventually producing a

75 µJ pulse of (266 nm) UV energy that is used to drive the photocathode. The

laser pulse train (and hence the photoinjector beam) phase is maintained relative
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Figure 4.15: Block diagram of the RF system layout for the UCLA
Neptune photoinjector, linac, and deflecting cavity.

to the mode-locker RF by a timing stabilizer box. The timing stabilizer monitors

the laser output signal from a photodiode and then creates a feedback loop which

matches the zero-crossing of the RF reference to the measured zero-crossing of

the laser pulse train. The resultant timing stability is on the order of 1 ps.

Since the low-level RF signals for the various cavities are harmonics of the

base frequency of 38.08 MHz, they are phase-locked with respect to the laser

oscillator and therefore with respect to the electron beam. The low-level 9.59616

GHz RF signal produced by the PLDRO (and phase-locked to the 38.08 MHz

reference) is then transported on low-loss Heliax coaxial RF cable to a phase

shifter and attenuator (which can be manipulated in the control room) and then

to a 28 dB preamplifier which can provide up to 500 mW for the input of a VA-

24G klystron. The klystron unit is a turn-key rebuilt military device provided

by Radio Research Instruments. It has a built-in high-voltage power supply and

155



pulse-forming network and contains all the necessary electronics to produce up

to a 50 kW (peak power) output pulse of 1 µm duration which is synched to

an externally provided trigger pulse. The klystron can be operated at repetition

rates up to 1 kHz.

The 50 kW pulse from the VA-24G klystron is transported to the input coupler

of the deflecting cavity by a system of WR-90 waveguide. The output waveguide

port of the klystron is attached to an isolator made by Wenteq Corporation,

which acts like an RF “diode” to allow the flow of RF power only in the forward

direction and thereby prevent any reflected power from damaging the klystron.

The trigger pulse for the klystron is derived from the same chain of timing boxes

that is used to trigger the high-power RF system for the gun and linac. Hence,

both the timing of the 1 µm pulse and the phase of the 9.59616 GHz RF power

it carries are synchronized with the gun/linac RF system and with the electron

beam itself.

4.6.2 The Mechanical Design

The final cavity design incorporates a knife-edge vacuum seal machined directly

into the mating faces of the cells. The knife-edge seal can accommodate either

a copper gasket or Viton o-ring. This design allows the cavity to be easily dis-

assembled, and negates the need for brazing, welding, or diffusion bonding of

the structure, which could warp and detune the cells. This design feature is un-

usual, but is made feasible in this case by the low peak power required (50 kW)

and by the less-than-stringent vacuum tolerances (on the order of 10−6 torr). A

computer-aided design (CAD) drawing of the structure is shown in Fig. 4.16. A

quarter of the structure is cut away to show the interior.

The cells and their interior cavities were machined on a lathe in the UCLA
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Figure 4.16: CAD drawing of the Neptune deflector with 1/4 section
cutaway.

Physics Department machine shop. Tolerances on the inner cell diameters was

met to within approximately 0.0002” of the design values. A rectangular slot in

the top of the center cell and the polarization mode-splitting holes were machined

using electric discharge machining (EDM) by WireCut Co. of Los Angeles. A

custom-made waveguide section (shown at top in the figure) was constructed

using wire-EDM at the UCLA Department of Electrical Engineering machine

shop. This waveguide piece was brazed into the rectangular slot on the center

cell by a local brazing company. This was the only permanent bonding that was

performed on the structure.

Since the knife-edge seal design is an experimental and untested method of

assembling a high-power RF cavity, the structure shown in Fig. 4.16 was designed

in such a way that all of its parts could (in principle) be brazed or diffusion bonded

together in the event that the vacuum-seal design resulted in deleterious effects
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such as extensive RF breakdown. As we will see, no such deleterious effects

were observed and therefore no permanent bonding of the cavity was attempted.

The material for the structure was chosen to be GlidCop AL-15, an industrial

material which has the electrical properties of copper but a tensile strength near

that of stainless steel. It consists of copper suspended in a matrix of aluminum

oxide. This material was chosen so that copper gaskets could (in principle) be

used to join the cells, and because it was hoped that the higher tensile strength

would help prevent deformation of the structure in the event that it needed to

be permanently bonded.

4.6.3 Field Flatness and Resonant Frequency Measurements

The electromagnetic properties of the deflecting cavity were tested using a net-

work analyzer (model HP 8719D) which is essentially a frequency sweeper that

can measure the forward, reflected, and transmitted amplitude and phase of the

RF wave on one or two ports, and can thereby calculate the complex transmit-

tances and reflectances between the ports of a passive RF device. In Fig. 4.17(a)

the square magnitude of the complex reflectance Γ (also known in transmission

matrix theory as the S11) at the input coupling port of the deflecting cavity is

plotted in decibels over the full frequency range of the passband of the structure,

showing all five of the resonances. As predicted by the simulation results of Sec-

tion 4.5.2, the π-mode corresponds to the first resonance, which occurs at the

lowest eigenfrequency. A closeup of the resonance for this mode is shown in part

(b). In part (c) the complex reflectance values corresponding to the frequency

range of part (b) are transposed onto the complex plane. This type of plot is

known in microwave circuit theory as a Smith Chart. The circle traced by the

resonance in this plot measures the impedance matching of the structure and
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Figure 4.17: Plots of reflectance at the input coupler showing (a) all
five modes of the passband, (b) a closeup of the π mode, and (c) the
reflectance plot in the complex plane (i.e. Smith Chart) for the π
mode.

thereby provides an indication of the efficiency of the coupling. Since the radius

of the circle is less than unity, we deduce that the structure is undercoupled in

the sense defined by Eq. (4.44).

In Table 4.6 we list the various cavity parameters extracted from the resonance

plot of the π-mode shown in Fig. 4.17(b) and (c), including the resonant frequency

and the full-width at half-max (FWHM) of the resonance. Since the cavity is

slightly undercoupled (as it was intended to be, pursuant to the discussion of

Section 4.5.4) the coupling beta is inversely related to the VSWR. The resonant,

loaded, and external quality factors as defined in Section 4.3.3 are also listed.

To measure the field balance of the structure, a bead pull was performed.

This is a technique whereby a metallic or dielectric bead, whose dimensions are

small compared to the RF wavelength, is suspended on a wire and then pulled

along the axis of the cavity. The presence of the bead at a given location z along

the axis of the structure produces a perturbation ∆f of the resonant frequency

given by Slater’s theorem: ∆f/f = (αm|H|2−αe|E|2)/W0, where f is the unper-

turbed frequency, W0 is the stored energy in the unperturbed cavity, H and E are

the magnetic and electric fields at the location of the bead (in the unperturbed
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Table 4.6: Measured parameters of the π resonance in air at room temperature.

Parameter Value Units

fπ 9.60084 GHz

FWHM 1.51 MHz

VSWR 1.15

βc 0.870

Q0 11889

QL 6359

Qe 13672

cavity), and αm, αe are factors which depend upon the geometry and material

properties of the bead.

Consequently, a measurement of ∆f as a function of longitudinal position

produces a plot which is a sum of the square amplitudes of the axial electric

and magnetic fields, as shown in Fig. 4.18(a). Note that due to the minus sign

between terms in the Slater equation and the fact that the magnetic field is a

maximum in the cell centers and the electric field is maximum at the irises, the

resulting plot oscillates between positive and negative peaks. The positive-going

peaks corresponds to maxima in |H|2 and the negative-going peaks correspond

to maxima in |E|2. To obtain a plot that represents the field amplitudes (rather

than their squares) we take the positive square root for positive values and the

negative square root of the magnitude of the negative values, producing the result

in Fig. 4.18(b). Now the positive-going peaks are proportional to |H| and the

negative-going peaks are proportional to |E| at the given axial locations. We see

that the resultant field balance is good to within 10%.

The plots in Figs. 4.17 and 4.18 and the corresponding parameter values in
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Figure 4.18: Aluminum bead pull results showing (a) frequency shift
and (b) the square root of the frequency shift vs. position along the
cavity axis.

Table 4.6 were taken in air at room temperature. The frequency and coupling

were then measured as the temperature of the cavity was increased. Cavity

temperature was regulated using a heater tape with a temperature controller. The

controller was connected to a thermocouple measuring the cavity temperature and

was set to regulate the current in the heater tape in order to stabilize the cavity

at a preset temperature value. The feedback mechanism for this temperature

control was PID (proportional, integral, derivative) with the PID parameters set

automatically by the controller’s “autotune” feature. The cavity with heater tape

and thermocouple attached was then wrapped in several layers of aluminum foil

to help thermally isolate the cavity from the environment and thereby permit

it to reach thermal equilibrium more quickly. The resonant frequency of the

cavity π-mode is plotted as a function of the thermocouple temperature reading

in Fig. 4.19(a) for both in-air (red line) and in-vacuum (blue line) operation of

the cavity. For the vacuum measurements the cavity was evacuated on a test-

stand to a pressure of 1.8×10−6 torr using a turbo-molecular pump. The vertical

offset of approximately 2 MHz between the red and blue curves is consistent with

a simple estimate obtained by noting that the monocell resonant frequency varies
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Figure 4.19: Plots of (a) resonant frequency and (b) reflectance as
functions of cavity temperature in air (red curves) and in vacuum
(blue curves).

with dielectric contant as 1/
√
ε. Substituting the value for air (ε = 1.00059) gives

a shift of 0.3 % or 2.8 MHz for air vs. vacuum.

The plot in Fig. 4.19 (b) shows the corresponding reflectance values (in dB)

for both air and vacuum. The curves shown are interpolations of the data points.

They are not intended as a theoretical fit to the data, but merely as an aid in

visualization. From the linear fit to the vacuum plot in part (a) we find that the

resonant frequency matches the design value of 9.59616 GHz at a temperature

of 65 C. We see from the plots in part (b) that the cavity passes through the

optimal coupling point at a temperature near 45 C. After this point, it becomes

slightly overcoupled. Consequently, at the projected resonant temperature of 65

C we find that the reflectance value is -35 dB which corresponds to a coupling of

βc = 1.036.

After installing the deflecting cavity on the UCLA Neptune beamline, high-

power testing was performed to verify that it was operating normally and would

accept high-power RF without experiencing significant breakdown. The forward

and reflected power levels were measured on a 49 dB cross-waveguide coupler

located just before the input waveguide flange of the cavity, using a calibrated
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Figure 4.20: Plots of deflecting cavity forward and reverse power vs
time at several different output levels of the klystron.

crystal detector. The waveforms on the forward and reverse couplers were ob-

served on an oscilloscope terminated at 1 MΩ. The captured oscilloscope traces

are reproduced in Fig. 4.20. The vertical scales have been converted into units of

kilowatts using the measured calibrations of the forward and reverse couplers and

the crystal detector. Traces are shown for three different settings of the input at-

tenuation on the X-band klystron. The sharp spikes in the reflected power trace

are typical of a resonant standing wave structure. The first spike is an initial

reflection due to the nonzero fill time of the cavity, and the second represents the

exponential leakage of stored power in the cavity through the coupler following

the sudden termination of the drive pulse.

The maximum peak power output of the klystron was found to be approxi-

mately 50 kW, which is consistent with the nominal output power quoted by the

vendor. One of the primary concerns in any high-power test of a metallic cavity

is electrical breakdown due to the strong electromagnetic fields in the structure.

The electrical plasma discharge characteristic of a breakdown event causes all

of the input power to be reflected after the point in time when the breakdown

occurs, resulting in an obvious distortion of the reflected power trace. During

the high-power testing (and subsequent operation) of the deflecting cavity no
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breakdown events were observed even at the highest achievable power levels.

164



CHAPTER 5

Experiment and Results

5.1 The Neptune Laboratory

The UCLA Neptune Laboratory is a state-of-the-art facility devoted to the study

of the dynamics of and the interactions between relativistic electron beams, high-

power lasers, and plasmas. The lab is jointly operated by the Laser-Plasma

Group, under the direction of Professor Chan Joshi of the UCLA Department

of Electrical Engineering, and the Particle Beam Physics Laboratory (PBPL),

headed by Professors James Rosenzweig and Claudio Pellegrini of the UCLA

Department of Physics and Astronomy. The two primary systems which comprise

the lab are a high-power CO2 laser system and a photoinjector beamline. The

CO2 laser is designed to generate up to 600 GW of peak laser power in a 200

ps pulse, thereby delivering as much as 120 Joules of directed laser energy to an

experimental target. The photoinjector produces a low-emittance (4 mm mrad)

beam of electrons at energies up to 14.5 MeV. In the present section we describe

the layout of the accelerator and the details of its various subsystems. In the

sections which follow, we describe the specific layout of the ramped electron

bunch experiment and the experimental results obtained from it.
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5.1.1 Beamline

The RF gun at Neptune is a product of the BNL-SLAC-UCLA collaboration on

high-brightness beam development and is similar to guns that have been operated

at BNL and SLAC. It is a 1.625 cell π-mode standing wave cavity, cell-to-cell on-

axis coupled. The nominal on-axis peak field is 100 MV/m, although it is possible

to obtain 115 MV/m with the available power; the central launch phase of the

laser beam is 30 degrees (where 90 degrees corresponds to maximum field). The

nominal energy of the beam at gun exit is 4.6 MeV; in practice, energies from 3.5

to 5 MeV have been obtained. The gun is coupled to the waveguide in the full cell

only, with a symmetrizing port located opposite the coupling slot to cancel dipole

components of the field which can lead to emittance growth. Several different

cathode types have been employed. Initially, the cathode was a disk of solid

copper, and subsequently a single copper crystal was embedded in the cathode

center; currently, a magnesium cathode is in use, which has raised quantum

efficiencies by a factor of 2 to 3. Emittance compensation during injection is

accomplished by a yoked magnetic solenoid mounted around the gun exit port.

Measured normalized beam emittances have ranged from 4 to 10 mm mrad, with

nominal value near 5 mm mrad.

The linac is a 7+2/2 cell π-mode standing wave structure and the first fully

operational version of a plane-wave transformer (PWT). Under normal operating

conditions, roughly 9 MeV of acceleration is produced in the linac (45 MV/m

peak field), but more acceleration is possible. The design of this novel device

is discussed in Ref. [71] and summarized here. The structure is similar to a

disc-loaded linac, except that the outer wall is moved to a large radius, leaving

a gap between the disks and the wall. This gap serves as a coaxial, plane-

wave transmission line, which provides extremely strong cell-to-cell coupling and
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Figure 5.1: Schematic of the Neptune beamline and the S-Bahn dogleg
compressor.

excellent mode separation. In the absence of support rods (which are needed to

hold the disks in place), this structure also has a very high shunt impedance Rs

and high unloaded Q, with the ratio Rs/Q approximately the same as a more

standard structure. The introduction of the four support (and water-cooling)

rods into the cavity causes enhanced RF power losses, and Rs is actually smaller

in this case than that found in a standard structure. Even so, Q is enhanced,

and the PWT has a long fill time. Both the gun and PWT are approximately

critically coupled, and the PWT barely fills during the 3.5 µs RF pulse.

The PWT was designed at UCLA and built in the Physics Deptartment ma-

chine shop. Engineering issues to be solved included effective internal cooling,

incorporating all-metal sealing surfaces, and optimization of the iris apertures

to reduce the maximum surface gradient. The continued successful operation of

the PWT, despite its unusual mode and frequency spectrum, demonstrates its
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usefulness as an RF linac.

5.1.2 RF System

The RF system at Neptune operates at the SLAC frequency of 2.856 GHz and

relies on standard S-band technology. Synchronization with the drive laser is

ensured by using the laser modelocker output (at 38.08 MHz) as the RF clock,

after frequency multiplication by 75. About one watt of continuous low-level RF

is delivered to a pulsed (<12 µs) solid state amplifier, which in turn drives the

input of the XK-5 klystron. The klystron is pulsed using a custom modulator with

pulse length variable between 3.5 and 7 usec, achievable by varying the number of

capacitors in the modulator circuit. For normal (short-pulse) operation, a PFN

composed of 10 capacitors is charged to 41 kV and discharged using a thyratron

switch into the klystron pulse transformer, where the pulse is voltage-multiplied

by 12.

Up to 20 MW of output power is supplied by the klystron and delivered

to the beamline through a waveguide system pressurized to 28 psi with sulfur

hexafluoride. Power is divided in a 2:1 ratio between the linac and gun, with

typical values of 4-5 MW in the gun and 10-12 MW in the linac. Both gun and

linac are equipped with high-power variable attenuators, and there is also a phase

shifter on the linac input waveguide, which allows the operation of the linac at

any desired phase relative to the gun. The injection phase of the drive laser at

the gun can also be varied with a phase shifter on the low-level RF line.

Forward and reflected power levels in the system are measured using direc-

tional couplers in different portions of the waveguide and calibrated crystal de-

tectors. RF power values can be calculated from oscilloscope traces of the crystal

detector voltages and displayed automatically in the control room.
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5.1.3 Photoinjector Drive Laser

The photocathode drive laser illuminates the gun cathode with a pulse of ultravio-

let (266 nm) light having a minimum temporal length of about 1 psec (FWHM),

at an energy up to 100 microjoule/pulse. This is accomplished using chirped

pulse amplification and compression of a 1.064 µm pulsed mode-locked Nd:YAG

laser (using the 38.08 MHz master RF signal) amplified by a Nd:glass regener-

ative amplifier (regen) at 5 Hz. To amplify the pulse in the regen the laser is

first matched into a 500 m long optical fiber to produce pulse lengthening and

a frequency chirp. The chirped pulse is then amplified by a factor of 1 million

in the regen and sent to a grating pair where it is compressed by removing the

chirp correlation. The pulse length can be arbitrarily lengthened by detuning the

grating compressor, allowing a choice of pulse lengths for emittance optimiza-

tion. The resulting picosecond pulse is frequency up-converted using two stages

of BBO doubling crystals. The conversion efficiency is typically 10%. Because

of the many nonlinear stages in this laser configuration the pulse-to-pulse fluc-

tuation amplitude is at best 10% RMS. There are also pulse length fluctuations

associated with these effects, but they are not of great consequence operationally.

The time of arrival of the laser with respect to the RF wave is controlled by a

phase-shifters (manual and electronic) in the low level 2.856 GHz RF system.

The fluctuations in the arrival time of the laser pulse on the cathode with re-

spect to this RF signal are suppressed by use of a Lightwave electronics feedback

system on the oscillator. The fluctuations have been measured to be below one

picosecond.
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5.1.4 Video and Trigger System

Along the beamline there is a system of CCD cameras for imaging the beam on

various insertable profile monitors. The cameras are all gen-locked to a master

video signal which originates from a master camera located in the control room,

and is then repeatedly amplified by a series of distribution amplifiers, which

provide gen-lock reference signals for the cameras. This ensures that the video

signals from all of the cameras are synchronized. The video signal from the master

camera is also the source of the 5 Hz master trigger for the regenerative amplifier

and high-power RF systems. This 5 Hz trigger is derived from the 60 Hz sync

pulse of the master video signal, which is extracted by a video sync box and

is then used as the reference for a Stanford Research Systems delay generator,

which outputs a 5 Hz pulse train to trigger the lamps and Pockel’s cells of the

regenerative amplifier.

A homemade box located in the control room reduces the repetition rate of

the master trigger from 5 Hz to 1 Hz. The output of this box is the trigger source

for the S-Band and X-Band klystrons as well as the freeze-frame which is used to

capture images from the cameras. Therefore, although the rep rate of the drive

laser is fixed at 5 Hz, that of the high-power RF system can be set to either 5 Hz

or 1 Hz, depending upon whether the homemade box is turned on or off. Under

most conditions the RF system is triggered at 1 Hz repetition, as this is sufficient

for most experimental efforts and it gives the beam operator sufficient time to

interrupt the trigger to the high-power RF in the event of a series of breakdown

events.
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5.1.5 Control System

The photoinjector is operated through a mixture of computer and manual con-

trols. Beamline magnet and actuator control, data acquisition, and video ma-

nipulation are accomplished using LabView 5.1 running on a Macintosh G4 com-

puter. Magnets and actuators are switched and controlled via CAMAC modules,

with readback of signals and diagnostics primarily through digitizing oscilloscopes

which communicate via GPIB with the control computer. Sixteen channels of

video are switched in the control room and may be digitized via a frame grabber

for online, shot-by-shot analysis of beam spots or emittance slits. RF power levels

are monitored on various oscilloscopes in the control room, and the RF phases

of the gun, linac, and deflecting cavity are controlled by manual phase shifters.

The beam charge and the UV drive laser energy are read automatically on every

shot and their values are updated on the computer control display.

5.2 Preliminary Diagnostic Measurements

5.2.1 Horizontal Dispersion Measurements

Prior to the construction and installation of the deflecting cavity, measurements

were done of the beam sizes at various locations along the beamline in order

to benchmark them against the simulation results. Since these measurements

were done at low charge, they are suitable for approximate comparison with

ELEGANT which does not include space-charge effects. Recall that the various

conditions on the optics of the S-Bahn compressor discussed in Section 3.2.3

constrain the allowed transverse Twiss parameters and emittance of the beam

entering the dogleg section. In particular, the normalized emittance should be

less than about 10 mm mrad, the beta function should be relatively large (at
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Table 5.1: Beam Parameters

Parameter Measured Value Location

Q 35.4±3.8 pC Faraday Cup

U 11.5 MeV Screen 10

σδ <0.5% Screen 10

αx -0.94±0.43 Prefocus Quads

βx 0.77±0.43 m Prefocus Quads

εN 6.03±1.8 mm mrad Prefocus Quads

least 1 meter) and the beam should be highly convergent at the entrance to the

first dipole.

However, technical and spatial constraints required that the photoinjector and

upstream optics be operated in a mode with somewhat smaller beta functions and

a larger emittance. It was observed that when the beamline is operated in accor-

dance with the emittance compensation scheme described in Section 1.2.4, the

beam which it produces tends to be transversely small and well-collimated (i.e.

βx,y < 1 m and αx,y ≈ 0). In order to increase the beta functions and make

the beam more convergent, the photoinjector was operated in a somewhat non-

optimal regime (from the perspective of emittance compensation) by increasing

the solenoid field by about 20% above the value corresponding to minimum emit-

tance, and moving the first set of quadrupole magnets shown in Fig. 5.1 (dubbed

the prefocus quads) as close to the first dipole magnet as spatial constraints would

allow. The empirical values for the Twiss parameters and normalized emittance

obtained from quadrupole scans are shown in Table 5.1.

Since these measurements were made prior to the installation of a diagnostic

for measuring beam compression, the linac phase was set to minimize energy
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spread rather than to produce a chirped beam. Previous measurements have

indicated an energy spread of less than 0.5% under these operating conditions. A

stable nondispersive operating point was determined empirically by observing the

beam on the six profile monitors (Screens 5, 10, 11, 12, 13, and 14 in Fig. 5.1).

The horizontal dispersion function ηx (or R16) was minimized by observing the

beam centroid position at the S-Bahn midpoint (Screen 11) under a variation of

the fields of all magnetic elements on the dogleg (B1, B2, Q1, Q2) by a fractional

offset ζ from the values corresponding to the desired operating configuration.

For a beam of constant central energy, the resultant shift in the centroid position

is the same as that which would be observed due to a change in the central

momentum by a fractional amount δ = −ζ, and is therefore given by

∆xcen = −R16ζ + T166ζ
2 +O(ζ3) (5.1)

Consequently, the first- and second-order horizontal dispersion terms R16 and

T166 can be obtained by fitting the measured centroid position data to a quadratic

in ζ. The values of T166 at the exit of the S-Bahn (Screen 13) obtained by this

method are shown in Table 5.2 for three different settings of the sextupole field

strength. Simulation values from the transport code ELEGANT are provided for

comparison. The geometrical field strength κ and ratio α correspond with the

quantities in Eq. (3.25).

Experimental errors in Table 5.2 correspond to a 95% confidence level. Since

the quadrupoles were set to eliminate the linear dispersion, R16 in all three cases

was found to be zero to within the experimental error. Measurements of the RMS

beam beam size on Screens 5, 10, 11, 12, 13, and 14 agree with the ELEGANT

simulation results to within 20%.
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Table 5.2: Comparison of experimental and simulated second-order dispersion
values for various sextupole field settings

κ(m−3) α T166,exp(m) T166,sim(m)

0 0.00 2.56±0.59 2.54

537 -2.13 0.22±0.77 0.26

995 -1.55 -1.27±0.93 -1.69

5.2.2 Coherent Transition Radiation Interferometry Measurements

Since the horizontal dispersion does not provide a diagnostic of the longitudinal

trace space, the measurements of Table 5.2 were performed using a beam with

no momentum chirp and a relatively small (<0.5%) energy spread. To obtain

information about the effect of the sextupoles on the longitudinal distribution

of the beam, the beam was then chirped in momentum by injecting it with an

RF phase offset of -28 degrees relative to the crest of the accelerating field in

the standing wave linac cavity. The bunch length was then measured at differ-

ent sextupole settings using coherent transition radiation (CTR) autocorrelation.

Transition radiation emitted by the beam at a metal foil on Screen 14 of Fig. 5.1,

oriented at 45 degrees incidence, was autocorrelated using a Martin-Puplett-type

interferometer with wire grid polarizing beam splitters [72]. The bunch length σt

was extracted from the interferograms using the time-domain fitting procedure of

Ref. [73]. The extracted values are plotted in Fig. 5.2 as a function of sextupole

strength κ. The ratio of the two sextupole fields was set to α = −1. The data

show the dependence of bunch length upon the magnitude of the sextupole cor-

rection, with an approximately twofold compression occuring near the field value

κ = 1094 m−3.
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Figure 5.2: CTR autocorrelator measurements of electron bunch
length as a function of sextupole field strength, with superimposed
theoretical result (dashed line) obtained from PARMELA/ELEGANT
simulation combined with an autocorrelation algorithm.

It should be noted that, due to both the limited frequency bandwidth of the

autocorrelator apparatus and the nature of the fitting procedure used to extract

the pulse length from the data (which assumes a Gaussian current profile), for a

beam whose temporal profile is asymmetric, the value of σt obtained from the in-

terferogram is more closely connected with the FWHM than with the RMS width

of the distribution. Consequently, we have found that obtaining a theoretical

prediction to complement the data of Fig. 5.2 involves a somewhat complicated

computational procedure, the result of which is superimposed as a dashed curve.

To produce this theoretical curve, first the creation and transport of the beam

in the accelerating sectio were simulated using the tracking code PARMELA. This

detailed simulation employed 5000 macroparticles, whose initial temporal profile

(inherited from the laser pulse) was modulated in a way consistent with observa-

tions of the energy modulation of the beam, and a -28 degree phase offset in the

linac, producing a chirped beam. The set of output 6D trace space coordinates
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Figure 5.3: Longitudinal phase space plots and density profiles ob-
tained from ELEGANT results corresponding to the sextupole set-
tings of the (a) first, (b) third, (c) fourth, and (d) sixth data points
in Fig. 5.2 respectively, illustrating the progression of the phase space
compression and decompression.

obtained from PARMELA was then used as the input beam for an ELEGANT

simulation of the dogleg section, including a truncation of outlying particles con-

sistent with the observed 60% electron transmission efficiency through the device.

The longitudinal (z) coordinates of the particles were extracted from the ELE-

GANT simulation at the location corresponding to Screen 14, where the CTR

foil was inserted. An algorithm was used to reconstruct from the extracted z co-

ordinates the predicted autocorrelation function, including appropriate filtering

of the frequency content due to diffraction, collection, and transport efficiency

effects.

The simulated autocorrelation function was then subjected to the same fitting

procedure that was used to extract σt from the empirical interferograms, yielding

values which produce the dashed curve in Fig. 5.2. These simulation results

suggest that the observed compression and decompression results from a “folding

over” of the longitudinal trace space due to the quadratic T566 dependence in

Eq. (3.7), where particles of both high and low energy begin to occupy the
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same longitudinal position within the bunch. This scenario is illustrated by the

trace space plots in Fig. 5.3. The maximum compression [Fig. 5.3(b)] occurs

at the sextupole field value where this folding over begins to change direction in

z, corresponding to the point at which the second-order term T566 changes sign.

The discrepancy between theory and data near the fourth data point in Fig. 5.2

appears to be due to the sensitivity of the theoretical autocorrelation algorithm

to the sharp spikes in the temporal distribution displayed in Figs. 5.3(c) and

5.3(d).

Although the temporal RMS of the distribution is smaller in 5.3(c) than in

5.3(d), the spike is more pronounced in 5.3(c). That the physical data appears

less sensitive to this effect may be related to the additional frequency filtering

produced by the interferometer in the short wavelength components of the spec-

trum. These effects may arise from the poor high frequency performance of the

wire grid beam splitters in the Martin-Puplett device. Of course, one cannot rule

out the possibility that the beam performance is not completely consistent with

the predictions of simulations.

These sorts of uncertainties highlight the limited utility of CTR interferometry

in this context and point to the need for more sophisticated measurements of

the longitudinal phase space. The diagnostic constructed for this purpose, as

discussed in Chapter 4, was a 9-cell deflecting mode cavity driven at an X-band

frequency of 9.59616 GHz. In the following section we present the results of

measurements of the longitudinal profile in the Neptune experiment using this

device.
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5.3 Deflecing Cavity Longitudinal Profile Measurements

5.3.1 Experimental Setup

As was seen in Fig. 5.1, the dogleg section is followed by a triplet of quadrupole

magnets (dubbed the final focus quads) which are used to help transport the

emerging electron beam through the 1 cm aperture of the deflecting cavity and

focus it on a profile monitor located 28 cm from the exit of the deflecting cavity.

A cartoon diagram of the setup is shown in Fig. 5.4 for reference. The screen

on which the final beam profile is imaged (Screen 15) consists of a 1”-diameter

Cesium-doped yttrium-aluminum garnet (YAG) crystal, which is mounted per-

pendicular to the beam path and followed by a 45 degree mirror. This is the same

basic configuration used for all of the profile monitors on the Neptune beamline

except that a larger diameter crystal was used in this case, to provide an ade-

quate aperture for the deflected (i.e. streaked) electron beam. A CCD camera

was used to capture the reflected image of the beam profile from the back side of

the YAG crystal.

The mount for the YAG crystal incorporates a built-in Faraday cup for mea-

suring the final beam charge. The center of the Faraday cup is vertically displaced

by 2 inches from the center of the YAG screen, as seen in Fig. 5.5. The entire

mount is then attached to a pneumatic actuator with a 2” stroke, so that either

the YAG or the Farday cup can be selectively inserted into the beam path.

Alignment of the beam through the deflector was accomplished by sending a

red diode laser down the final section of beamline and marking its position on the

two profile monitors along the way (Screens 13, 14 in Fig. 5.1). To check that the

alignment laser trajectory was coincident with the axis of the deflecting cavity,

the final pop-in screen was temporarily removed and the circular aperture of the
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Figure 5.4: Block diagram of the experimental setup for the deflecting
cavity measurements.

Figure 5.5: Schematic of the combined beam dump and YAG profile
monitor built as a final diagnostic device.
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deflecting cavity was traced onto a sheet of paper placed on the wall past the end

of the beamline. In addition, the laser position was checked at two locations on

the final vacuum chamber to verify that it coincided with the center of the beam

pipe. Due to small variations in the actuator assemblies for Screens 13 and 14

(such as minor differences in the lengths of the custom-made extension pieces for

the actuator arms and issues such as whether copper or viton o-rings were used)

it was found that the centers of the YAG crystals deviated from the center of the

beamline by as much as 2 to 3 mm. Thus, the vector trajectory of the electron

beam was adjusted, using steering magnets and the trim coils on the final pair of

dipole magnets, to coincide on these screens with the measured position of the

alignment laser rather than with the geometrical centers of the screens.

5.3.2 Deflection vs. RF Phase

In order to verify the sinusoidal dependence of the deflecting field on RF phase

and to provide a direct measure of the deflecting voltage of the cavity, the position

of the beam centroid was measured as a function of RF phase at a fixed input

power of approximately 10 kW as measured on the forward power coupler with

a crystal detector. The resulting data are plotted in Fig. 5.6 alongside two

captured images taken at different phase values. A sinusoidal function has been

fitted to the data, indicating very good agreement. Note that the scale on the

horizontal axis has been offset in order to match the zero-crossing of the sinusoidal

fit, and the vertical axis has been offset so that the centroid position of the streak

corresponding to the zero-phase point has a nominal vertical position of y = 0.

Recalling that the y − z correlation was given by Eq. (4.1), we see that the

position of the centroid is described by y = Q̂ where Q̂ is the centroid offset in

Eq. (4.2), which varies sinusoidally with phase ψ0. The maximum deflection is

180



Figure 5.6: Images of the deflected beam at two different phases and
measured on-screen deflection distance y plotted against the RF phase.
A sinusoidal function is fitted to the data (solid curve).

given by the amplitude Q̂max = eV0L/p0c. The sinusoidal fit in Fig. 5.6 gives an

amplitude value of Q̂max = 5.51±0.21 mm. Hence, at the measured beam energy

of 11.73 MeV and a drift length of 27.9 cm, the predicted deflecting voltage is

V0 = 232 ± 9.6 kV. This value is compared with those calculated from the RF

power levels measured at two different internal oscilloscope impedance settings

(50 Ω vs 1 MΩ) in Table 5.3. The RF power going into the cavity was measured on

the oscilloscope using a crystal detector attached to the forward power coupler on

the deflecting cavity. Since the impedance of the oscilloscope alters the amplitude

of the power signal, separate power-to-signal calibrations were performed for the

two impedance settings. The deflecting voltage was then calculated using the

formula V0 =
√
PcavR̃s where we take the shunt impedance value R̃s = 5.6 MΩ

predicted by the HFSS simulations.

Note that the deflecting voltage values obtained from the RF measurements

are consistent with each other but differ from the phase scan result by about 14%.

Since the phase scan is a more direct method and has fewer potential sources of
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Table 5.3: Comparison of deflecting voltage calculated from phase scan and RF
power measurements.

Method Forward Power (kW) V0 (kV)

Phase Scan 9.6±0.8 232±9.6

RF (50 Ω termination) 12.8±6.8 267±71

RF (1 MΩ termination) 12.1±4.7 261±51

measurement and systematic error, this value is more reliable. The magnitude of

this discrepancy lies within the random errors in the RF measurements, which

are large because of the large (49 dB) attenuation of the forward power coupler,

which makes power values calculated from the coupled signal extremely sensitive

to any measurement error in the attenuation value of the coupler itself. Some

additional systematic error may also be present due to the fact that the simulated

value of the shunt impedance was used in the RF calculations.

The deflecting voltage in this measurement is approximately half of the design

value specified in Table 4.2, because at full voltage, the maximum deflection

begins to exceed the width of the screen. But recall that the design voltage was

somewhat overspecified by setting it to be three times the minimum voltage of

Eq. 4.4. Consequently, in practice, the cavity was rarely operated at full power.

5.3.3 Deflector Results with Unchirped Beam

Prior to running a chirped beam through the dogleg and the deflector, the beam

was run near the optimal linac phase for minumum energy spread in order to op-

timize the transport and measure the longitudinal structure of the uncompressed

pulse. An example trace of the deflector streak produced by such a beam is shown
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Figure 5.7: False color plots of uncompressed electron beam with (a)
deflecting cavity turned off, (b) deflecting cavity turned on, as well as
(c) the current profile reconstruction of the image in part (b).

in Fig. 5.7. In this case, the beam energy was 13.14 MeV and the final beam

charge measured on the Faraday cup was 270 pC.

The image in Fig. 5.7(a) shows the focused beam with the deflecting cavity

turned off. When the deflecting cavity is turned on at an input power of 40.6 kW

the beam is streaked along the vertical axis producing the image in Fig. 5.7(b).

The contour plots in parts (a) and (b) of Fig. 5.7 are false-color reconstructions

of the captured black-and-white CCD camera images on the final large-aperture

YAG screen located after the deflecting cavity (i.e. Screen 15). The bit count

on each pixel of the captured CCD image was assumed to be proportional to the

number of electrons hitting the YAG within the geometrical area corresponding

to the size of one pixel. Then 5 × 5 blocks of neighboring pixels were averaged

together and interpolated in order to smooth over the noise in the video signal.

The background has been subtracted out by sampling a region well outside the

area where the beam is located and then subtracting the average bit count per

pixel from the whole image. The horizontal and vertical axes have been scaled to
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units of mm based upon the calibrated pixel count per unit length of the imaged

object for the camera and optical setup used.

The plot in Fig. 5.7(c) shows the reconstructed current profile based upon

the streaked image in part (b) and the measured charge of the beam. To produce

this reconstruction, the bit counts per averaged 5× 5 block used to produce the

interpolated (i.e. smoothed) false-color plot in part (b) were projected on the

vertical (y)axis by summing over horizontal rows. The vertical axis was then

rescaled to units of time by virtue of Eq. (4.67). Note that there is some ambi-

guity as to which end of the plot corresponds to the head of the beam as opposed

to the tail. This is due to the fact that there are two zero-crossings of the RF

per period, separated in phase by 180 degrees, and with the sign of the deflection

correspondingly reversed for the head relative to the tail. However, based upon

the results for the chirped beam, which will be presented in Section 5.3.4, the

locations of the head and tail have been inferred here and the directionality of

the horizontal scale on the current profile plot has been adjusted appropriately.

Thus the plot indicates an uncompressed beam profile with a sharp initial spike

followed by a gradually decaying tail.

To gauge the reasonableness of these results in terms of the temporal bunch

length and bunch shape, we can compare with independent measurements of the

temporal structure of the autocorrelated drive laser pulse in the infrared (1064

nm), following its amplification in the regenerative amplifier and compression in

the grating compressor. The diagnostic employed for this purpose was a home-

made multi-shot second-harmonic-generation (SHG) autocorrelator [74]. The re-

sulting interferogram, shown in Fig. 5.8(b), provides an indirect measure of the

drive laser pulse length immediately after the compressor gratings. The FWHM

of this interferogram is found to be 28.8 ps. For comparison, the autocorrelation
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Figure 5.8: Plots showing (a) the autocorrelation function of the recon-
structed electron bunch profile in Fig. 5.7(c) and (b) the normalized
autocorrelation of the drive laser obtained by second-harmonic-gener-
ation interferometry.

function of the reconstructed profile of the electron bunch from Fig. 5.7(c) is

shown in Fig. 5.8(a), having a FWHM of 10 ps. The discrepancy is partially

resolved by noting that the laser autocorrelation measurement is taken prior to

two stages of frequency up-conversion by colinear SHG in a pair of nonlinear

crystals. Since the SHG pulse varies with the square of the intensity of the input

laser pulse there is an approximate
√

2 reduction in pulse length corresponding

to each stage of frequency conversion. Consequently, the drive laser pulse is ex-

pected to be shortened by approximately a factor of 2 by the time it reaches the

photoinjector cathode. Note that there is also additional structure in the wings

of the autocorrelation in Fig. 5.8(a) as compared with (b), which is due to the

highly structured tail seen in Fig. 5.7.

The profile of Fig. 5.7 is typical of streaks taken of the uncompressed beam,

including the large degree of structure in the tail. In some streaks, this structure

is more pronounced, as seen in Fig. 5.9. The origin of this structure is not fully
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Figure 5.9: False color streak images with (a) deflecting cavity turned
off, (b) deflecting cavity turned on, as well as (c) the current profile
reconstruction of the image in part (b) showing structure in the tail
region.

understood. One possibility is that there is additional structure in the tail of the

drive laser pulse in the IR which varies from shot-to-shot, and is not apparent in

the wings of the laser autocorrelation of Fig. 5.8(b) because the data has been

averaged over many shots. Any such structure in the tail of the laser pulse could

subsequently be amplified by the frequency doubling mechanism in the nonlinear

crystals due to the previously mentioned dependence of the SHG on the square

amplitude of the input pulse.

Additional verification of the electron bunch length can be obtained by a scan

of beam charge versus the RF phase in the gun. The theoretical relationship

between the two may be written in the form

Q(ψ0) = A

∫ ∞

−∞
I(ψ − ψ0)ηq(ψ0)dψ

e−(ψ0−απ/2)/τ

1 + e−(ψ0−απ/2)/τ
, (5.2)

where A is an amplitude constant, I(ψ0) is the laser intensity on the cathode as a

function of gun phase. The peak field is assumed to occur at a phase of ψ0 = π/2.

Note that we have appended to the integral in Eq. 5.2 an exponentially decaying
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Figure 5.10: Measured electron beam charge vs gun RF phase with
superimposed theory curve from Eq. 5.2 and corresponding fitting
parameters.

component for phases exceeding this value, in order to account for the loss of

charge resulting from radial blowout of the beam at large phase values. This decay

has associated fitting parameters α and τ which represent the fractional phase

offset of the falloff region from π/2 and the exponential decay rate respectively.

The quantity ηq is the effective quantum efficiency of the cathode, given by

ηq(ψ0) =

[
hν

e
− W

e
+

√
e

4πε0
βE0 sinψ0

]2

(5.3)

where hν is the drive laser photon energy, W is the cathode work function, β is

an empirical field enhancement factor, and E0 is the electric field amplitude at

the cathode.

Data of beam charge, measured using an integrated current transformer (ICT)

located at the photoinjector gun exit, plotted against RF phase is presented in

Fig. 5.10. Note that there is a pedestal at negative phase values, indicating the

presence of a secondary beam of lower charge that arrives 50 degrees earlier in

phase than the primary pulse. Eq. 5.2 is fitted to the data of the primary pulse

only, assuming for I(ψ0) a Gaussian laser pulse distribution with RMS width σ`.
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The resulting fit is superimposed as a solid curve on the plot in Fig. 5.10 alongside

the corresponding fit parameters. The fitted σ` value of 5 ps is consistent with

the RMS width of the pulse in Fig. 5.7, which was 5.9 ps. However, it should be

noted that the region of the theoretical curve in Fig. 5.10 that is most sensitive to

the laser pulse width is the rising edge near zero phase, where the data is distorted

by the presence of the secondary pulse, making the fitted value of this parameter

less reliable than the others. Nevertheless, the same fit parameters are found to

produce a good fit to the pedestal as well with a simple offset in phase and an

adjustment of the amplitude factor A. This suggests that the secondary beam

responsible for the pedestal is a ghost image of the primary pulse but offset in

phase by 50 degrees. The most likely explanation for the presence of the pedestal

is that there is a pre- or post-pulse from the regenerative amplifier due to the

nonzero contrast ratio of the optical cavity. This pulse is would then be separated

from the main one by about 7 ns and would therefore be injected many RF cycles

later and at a different RF phase relative to the peak of the RF. The relative

amplitudes of the main pulse and the pedestal in Fig. 5.10 are consistent with

the typical 1:10 contrast ratio for the regenerative amplifier.

5.3.4 Deflector Results with Chirped Beam

Deflecting cavity data for an electron beam that was chirped in energy by running

the RF phase in the linac backward of crest by approximately 20 degrees is shown

in Fig. 5.11. Experimental parameters corresponding to the data of Fig. 5.11 are

shown in Table 5.4. The sextupole magnets were set to have opposite polarities,

corresponding to α = −1 where α is the field ratio parameter appearing in Eq.

(3.25).

As seen in Fig. 5.11(a), when the sextupoles are turned off the current profile
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Figure 5.11: Deflecting cavity streaks and current profile reconstruc-
tions of an (initially) chirped electron beam for five different sex-
tupole field values, with a sextupole field ratio α = −1: (a) κ = 0, (b)
κ = 547 m−3, (c) κ = 1094 m−3, (d) κ = 1641 m−3, and (e) κ = 2188 m−3.

Table 5.4: Experimental parameters corresponding to the data of Fig. 5.11.

Parameter Symbol Value Units

Final Charge Q 234 pC

Energy U 11.86 MeV

Forward Power Pcav 28.7 kW

Deflecting Voltage V0 401 kV

Gun Phase ψ0 60 degrees

PWT Phase ψpwt 70 degrees
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is characterized by a sharp narrow spike at the head, followed by a shallow tail,

as was seen in the simulation predictions of Figs. 3.8(b) and 5.3(a). (Note that

since the horizontal coordinate in Fig. 5.11 is arrival time t, whereas in Figs.

3.8, 5.3 it is longitudinal position z there is a reversal of direction due to the

convention z = −ct). As the sextupole field strength is increased, the hard edge

at the head of the beam gives way to a gradual ramp followed by a sharp drop at

the tail, as seen in Fig. 5.11(e). The intermediate stages shown in (b) through

(d) demonstrate the progression of this process.

Several significant features in Fig. 5.11 should be remarked upon. One is the

significant energy correlation on the horizontal axis, producing the obvious tilt

of the streak profiles. This energy correlation was produced by slightly detun-

ing the first horizontally focusing quadrupole magnet on the dogleg section by

approximately 2%. The resulting effect is a combination of the usual residual

second-order horizontal dispersion (T166), which was discussed in Section 5.2.1,

combined with an induced linear dispersion due to the detuning. The resulting

effect upon the streak data is that the vertical (y) dependence on arrival time

is complemented by a horizontal (x) dependence on energy, which results in a

reconstruction of the longitudinal phase space distribution of the beam. This

permits a direct visualization of the turning over of the phase space as the non-

linear correction is implemented by the sextupole magnets. Simulations of the

beamline using ELEGANT predict that a detuning of the first quadrupole by 2%

should produce a residual horizontal dispersion of R16 = -1.1 cm and a slightly

increased longitudinal dispersion value of R56 = -5.7 cm.

The sextupole field strength (κ = 2188 m−3) required to produce the ramp-

shaped beam in Fig. 5.11(e) is 80% higher than what was predicted by the

simulations of Section 3.2.5 and by the empirical measurements of Section 5.2.1 to
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be necessary in order to cancel the T566 of the dogleg. Consequently, the ramped

beam of Fig. 5.11(e) is characterized by a significant overcorrection of the second-

order longitudinal dispersion, similar to the simulated result of Fig. 5.3(d). This

overcorrection is most likely required by the fact that the uncompressed electron

bunches are not Gaussian but are asymmetrical in shape, as was seen in Figs.

5.7 and 5.9, and have a significant amount of charge concentrated at the head of

the beam.

Reproducing the results of Fig. 5.11 in simulation therefore required imposing

a similar asymmetry on the temporal distribution of the simulated beam prior

to the entrance of the dogleg. Since the UCLA version of PARMELA does not

currently support the ability to specify an asymmetric temporal shape for the pho-

tocathode drive laser, we instead ran PARMELA simulations of the photoinjector

using a flat-top temporal distribution at the cathode and 10,000 macroparticles.

The simulated distribution of 6-D phase space coordinates of the particles at the

exit of the linac was then filtered to selectively eliminate particles in the tail of

the distribution, thereby creating an artificially asymmetric temporal structure

characterized by a sharp rise in current at the head of the bunch followed by a

gradually decaying tail. The longitudinal phase space distribution and current

profile of the simulated electron beam thereby produced are shown in Fig. 5.12.

The 6-D phase space coordinates of this bunch (containing approximately 5000

macroparticles) were then used as input for an ELEGANT simulation of the dog-

leg and the deflecting cavity. These results are shown in Fig. 5.13, which displays

the predicted deflecting cavity streak image, longitudinal trace space, and cur-

rent profile for four different sextupole field values, corresponding to those of Fig.

5.11(a), (c), (d), and (e) respectively.

The ELEGANT simulations of Fig. 5.13 successfully reproduce the primary
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Figure 5.12: Plots of the simulated asymmetric bunch used as input
for the ELEGANT results of Fig. 5.13 showing (a) longitudinal trace
space and (b) current profile.

qualitative features of the data in Fig. 5.11, including the shape of the streak

images and the higher sextupole field strength required in order to achieve a

ramp-shaped bunch. When an initially symmetric Gaussian bunch is used as the

input for these simulations (with all other simulation parameters unaltered), the

results are found to be consistent with the previously shown PARMELA results

of Section 3.2.5, which predicted that the ramp-shaped current profile should

occur at a sextupole field strength of κ = 1204 m−3. This suggests that the

sextupole overcorrection required in the experimental run to produce ramped

beams can be largely explained by the temporal asymmetry of the initial bunch.

It also indicates that the bunch-ramping mechanism is somewhat forgiving of

such asymmetries, since ramped bunches can be obtained in spite of them simply

by adjusting the strength of the sextupoles.
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Figure 5.13: Simulated deflecting cavity streaks and current profiles
(using ELEGANT with 10,000 macroparticles) of an (initially) chirped
Gaussian electron beam for four different sextupole field values, with
a sextupole field ratio α = −1: (a) κ = 0, (b) κ = 1094 m−3, (c)
κ = 1641 m−3, (d) κ = 2188 m−3.
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5.4 Summary of Findings

We have reported on an experiment at the UCLA Neptune Laboratory to gen-

erate ramped electron bunches for potential application as a drive beam for

plasma wakefield studies, using a dispersionless translating section or dogleg as

a bunch compressor. Experimental results have indicated successful operation

of the beamline in a regime predicted by particle tracking simulations as being

suitable for compression and ramped bunch generation, as well as the use of

sextupole correctors to manipulate the nonlinear horizontal dispersion. Results

using coherent transition radiation (CTR) interferometry provide direct evidence

that the sextupole magnets can also be used to manipulate the longitudinal shape

of the electron bunch in a way that is qualitatively consistent with theoretical

predictions. To obtain a more complete experimental picture of the longitudinal

dynamics, a deflecting mode cavity was used as a diagnostic to reconstruct the

current profiles of the electron bunches after passing through the compressor.

Deflector studies with uncompressed bunches indicate that the beam has an

asymmetrical (non-Gaussian) shape with a sharp peak at the head of the beam

followed by a decaying tail, and an RMS duration of approximately 6 ps. The

measured bunch length is compared with autocorrelation measurements of the

drive laser and with the bunch length extracted from fitting to a charge vs. RF

phase scan of the photoinjector, and is found to be reasonably consistent with

those results. Studies with chirped bunches indicate that ramp-shaped current

profiles can be produced. The resulting deflector streak images and reconstructed

current profiles for the compressed beam are found to be qualitatively consistent

with ELEGANT simulations, so long as the initial temporal asymmetry of the

beam is included in the simulation. However, as a result of the asymmetric initial

current profile of the beam, the sextupole field strength required to produce
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a ramped current profile is found (in both simulation and experiment) to be

80% higher than what was predicted by simulations of beams with an initially

Gaussian current profile.
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CHAPTER 6

Future Directions

The experimental results presented in Chapter 5 provide a proof-of-principle

demonstration of the effectiveness of the proposed mechanism for generating

ramp-shaped electron bunches. However, in order to make such a scheme practi-

cable for reliably and efficiently driving a plasma wake-field accelerator, a variety

of additional experimental issues must be addressed. The longitudinal bunch

shape is not the only characteristic of beam quality which is relevant to the suc-

cessful operation of a PWFA. To properly match such a beam into a plasma, we

require that the betatron matching condition βr = βeq =
√
γ/(2πren0) be satis-

fied, where γ is the normalized bunch energy, n0 is the ambient plasma density,

and re is the classical electron radius. From this requirement, combined with the

condition on the bunch length L > 2k−1
p imposed by requiring that the trans-

former ratio R = kpL be greater than 2, and the condition for the blowout regime

nb >> n0 (which we will interpret as nb > 4n0), we obtain a set of constraints on

the plasma density, the drive beam RMS size σr, and the normalized emittance

εN :

n0 > n0,min =
mc2

πe2L
, (6.1)

σr < σmax =

√
Q/e

4πn0σz
, (6.2)

εN < εN,max = γβ
σ2
max

βeq
. (6.3)
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In these relations, we have approximated the beam density by nb = Q/(eπσ2
rσz)

and have used the definition of the normalized emittance εN = γβ(σ2
r/βr), where

β is the bunch velocity normalized by the speed of light, βeq is the equilibrium

beta function given above, σz is the RMS bunch length, and Q is the bunch

charge. We can use these constraints to obtain the following expression for the

minimum required beam brightness:

B > Bmin =
2cQ

ε2N,maxσz
. (6.4)

Here we have used the definition for the transverse brightness B = 2I/ε2N , where

I = enbβcπσ
2
r is the beam current. These relations provide us with an estimate

of the required beam parameters for successfully applying the bunch shaping

technique to create an adequate drive beam for a PWFA. In the present chapter,

we discuss several future experiments planned at the Neptune laboratory as an

extension of the work comprising this dissertation, which are aimed at addressing

these issues of beam quality. We also propose a simple technique for creating a

witness bunch.

6.1 High-Gradient Quadrupole Focusing

6.1.1 Experimental Overview

For the next stage of experiments on the Neptune dogleg beamline, an alternative

diagnostic setup will be employed, as shown in the inset in Fig. 6.1. Setup

1 corresponds with the previously conducted bunch profile measurements and

longitudinal phase space reconstruction which was discussed in Section 5.3.4.

Setup 2 will consist of a triplet of permanent magnet quadrupoles followed by a

Ce:YAG profile monitor, which will be used to obtain a high-brightness focus.
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Figure 6.1: Cartoon graphic of the experimental beamline (not to
scale). Blue lenses, red rectangles, and yellow wedges represent
quadrupoles, sextupoles, and dipole magnets respectively. Two al-
ternate setups are shown for the final diagnostics section.

Figure 6.2: Plot of the constraints as given by Eqs. (6.1)-(6.4), with
approximate maximal values for beam size and emittance, and mini-
mum brightness.
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Using the constraints on the beam parameters imposed by Eqs. (6.2)-(6.3),

we can construct plots showing the maximum allowable beam size and emittance

as a function of plasma density n0 for a 0.5 mm long 300 pC beam. This is shown

in Fig. 6.2(a). Combining this with the minimum density of n0 = 2.8×1013cm−3

required by Eq. (6.1) gives us estimated upper limits on RMS beam size and

normalized emittance of 110 µm and 50 mm mrad respectively. A corresponding

plot of minimum brightness using Eq. (6.4), shown in Fig. 6.2(b), gives a lower

limit of 250 mA/µm2. These limits are compared with simulation results in

Section 6.1.3.

6.1.2 Permanent Magnet Quadrupoles

The permanent magnet quadrupoles (PMQs) to be used for the S-Bahn final fo-

cus shown in Setup 2 of Fig. 6.1 are compact, with a high magnetic field gradient,

making them useful for focusing of high-brightness space-charge dominated beams

such as those produced at the Neptune laboratory. The magnets incorporate a

hybrid iron and permanent magnet design originally developed for the nonlinear

inverse Compton scattering experiment that is currently in progress at the Nep-

tune laboratory [75]. The magnets, shown in Fig. 6.3, contain cubes of NdFeB,

surrounded by an iron yoke which serves to close the magnetic circuit. Four hy-

perbolic pole faces constructed by wire electric discharge machining (EDM) are

held against the NdFeB cubes in a quadrupole array around the geometric center

by an aluminum keeper.

Magnets of 1 cm and 2 cm lengths have been constructed, incorporating 4

and 8 NdFeB cubes respectively. The measured field strengths of the two types

are similar (109 and 110 T/m respectively). The proposed configuration for the

triplet is a single 1 cm length defocusing PMQ, followed by a focusing and then a
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Figure 6.3: Drawing of hybrid permanent magnet quadrupole design
(a), courtesy of A. Doyuran, and schematic of assembled triplet and
stand (b).

defocusing 2 cm long PMQ. A side view of the assembly is shown in Fig. 6.3(b)

at a reduced scale.

6.1.3 Simulations of the Focusing Experiment

The PMQ focusing system described in Section 6.1.2 was simulated initially using

the matrix-based beam envelope code PowerTrace. Further studies were then

done using the particle tracking code ELEGANT to model the dogleg and final

focus sections [53]. The phase space coordinates for the particles used as the

input for the ELEGANT simulation were generated by a PARMELA simulation

of the photoinjector and linac.

Simulated experimental values for energy E, charge Q, normalized emittances

εx,N and εy,N , RMS bunch length and transverse dimensions σt, σx, σy, and bright-

ness B are given in Table 6.1. Initial values correspond to the beam parameters

immediately after the accelerating section, and final values correspond to the
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Table 6.1: Simulated Experimental Parameters

Parameter Initial F inal Units

E 13 13 MeV

Q 300 240 pC

εx,N 5 41 mm mrad

εy,N 5 15 mm mrad

σt 2.5 1.8 ps

σx 1 0.130 mm

σy 1 0.057 mm

B 7600 433 mA/µm2

final focus location of the permanent magnet quadrupole triplet of Setup 2. Fi-

nal values represent design goals based upon the PARMELA and ELEGANT

simulation results. The reduction in charge is a prediction based upon observed

transportation losses in the beamline, and the emittance growth is due primar-

ily to transverse nonlinear effects in the dogleg. Note that the predicted beam

sizes, emittance values, and brightness fall roughly within the limits set by Eqs.

(6.1)-(6.4), for applicability to plasma wake-field studies with large transformer

ratios.

6.2 Creation of a Witness Beam

In order for the ramped bunch mechanism presented in this dissertation to repre-

sent a useful technology for the wake-field accelerator, it must be compatible with

some feasible scheme for creating a witness bunch. The witness bunch would ide-

ally be a bunch of much lower charge which trails behind the main drive bunch,
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Figure 6.4: Simulation of undercorrected beam at exit of dogleg with
collimator removed in (a) and inserted in (b), thereby producing a
ramped drive beam followed by a low-charge witness bunch.

and can therefore be accelerated by the wake-fields which are generated by it.

One technique used in the past has been to accelerate the tail of the drive bunch

itself. However, a ramped drive bunch is intended by design to have a sharp

cutoff at the tail end. We saw, however, in Fig. 3.8(b), that with the sextupole

correctors turned off, the nonlinear effects produce a significant lower-energy tail

behind the bunch, though the ramped shape is lost. A potential solution would

be to operate in a regime intermediate between the conditions represented in

Fig.3.8(b) and 3.8(c), where the sextupole magnets are turned on but at a lower

field strength, producing a beam with a ramp at the front followed by a more

tapered fall-off at the back. This situation is seen in Fig.6.4(a), which shows the

results of an ELEGANT simulation of the dogleg compressor. By inserting a 1

cm wide collimator in the x-direction, at a location in the dogleg (corresponding

to the position of the quadrupole before the final dipole in Fig. 6.1) where the
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horizontal dispersion is large and therefore there is a strong correlation between

x and z, the tail of the beam can be truncated from the main body. As shown in

Fig. 6.4(b) this results in a ramp-shaped primary bunch followed by a separate

trailing bunch of lower charge. This scheme has the benefit of being relatively

simple, requiring only the insertion of a collimator into the beamline. However,

the resultant reduction in charge and horizontal truncation of the beam must be

taken into consideration in the design of the downstream focusing optics.

6.3 Scaling to Higher Charge

Future upgrades to the Neptune laboratory, including a new drive laser oscilla-

tor, replacement of the photoinjector, photocathode laser cleaning, and higher

RF power levels in the gun are expected to increase the bunch charge to as high

as 4 nC. It is therefore of interest to consider how the bunch shaping mech-

anism described previously scales to higher charge. Preservation of the beam

envelope under the emittance compensation mechanism in the gun and linac re-

quires that the bunch dimensions at the cathode scale with charge as Q1/3. This

scaling is accomplished by stretching the pulse length of the photocathode drive

laser and expanding its transverse dimensions accordingly. Simulations of the

Neptune photoinjector under this scaling in UCLA-PARMELA indicate a nor-

malized emittance of εx,N = εy,N = 25 mm mrad at the exit of the linac with 4%

transportation losses for an initial charge of 4 nC. Since the dogleg compression

mechanism requires a chirped beam, the bunch was chirped in energy by setting

the RF phase of the linac in the simulation to a value corresponding to an in-

jection phase of 22 degrees back of crest. This chirp, and the increase in bunch

length due to the charge scaling, result in a predicted 4.5% RMS energy spread,

compared with 1.8% energy spread for the 300 pC case.
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Table 6.2: Simulated Parameters Corresponding to Fig. 6.5 (a), (b), and (c)

Parameter (a) (b) (c) Units

εx,N 742 96 46 mm mrad

εy,N 456 141 68 mm mrad

T166 -0.26 0.00 -0.26 m

T266 -7.9 0.00 -7.9 rad

T566 -0.04 0.623 -0.04 m

U5666 -2.44 -1.02 -2.44 m

Figure 6.5: Simulation of longitudinal phase space and current profiles of 4nC
beam at exit of dogleg compressor with (a) with sextupoles set to eliminate
second-order longitudinal dispersion (T566), (b) with sextupoles set to eliminate
second-order horizontal dispersion (T166), and (c) with sextupoles set as in part
(a) but with a collimator inserted to remove low-energy tail.
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The final phase space coordinates of the particles in the PARMELA simu-

lation were then used as the input for an ELEGANT simulation of the dogleg

compressor. The results of these simulations indicated that due to the larger en-

ergy spread of the 4 nC beam, two undesirable effects became more pronounced:

(1) distortion of the longitudinal phase space by third-order longitudinal disper-

sion (U5666 in transport notation) and (2) emittance growth due to horizontal

second-order dispersion (T166 and T266). The first effect results in the formation

of a low-energy tail behind the beam. This is seen in Fig.6.5(a). The tail can, in

principle, be corrected by the use of octupole magnets. The second effect requires

the use of sextupole magnets and is somewhat more difficult to remedy, due to the

fact that, at least for the particular optical configuration of the Neptune dogleg,

it is impossible to simultaneously eliminate both the horizontal and longitudinal

second order dispersion (T166 and T566 respectively). Consequently, the sextupole

magnets may be used to eliminate the second order horizontal dispersion, thereby

improving the final emittance, but as a result the longitudinal dispersion becomes

nonzero and so the shape of the ramped profile is destroyed. This scenario is il-

lustrated in Fig. 6.5(b). A solution which appears to solve both problems is

to simply eliminate the tail in part (a) by collimating the beam. As it turns

out, much of the emittance growth is due to the low-energy particles contained

in this tail, and their removal improves the final emittance by a factor of two

and restores the ramped profile, as seen in Fig. 6.5(c). By using a collimator of

finite width, a small subset of the tail particles could be left as a witness bunch,

making this technique compatible with the results of the previous section. To

clarify these results, the simulated emittance and corresponding matrix element

values are provided in Table 6.2.

It should be noted that the simulations above do not include transmission

losses due to ordinary apertures of the beamline. And in fact, the simulated
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RMS beam sizes in the dogleg for the high-charge case are found to exceed the

radius of the beam pipe. Consequently, although scaling the compressor to higher

charge appears theoretically feasible, it would, in practice, be necessary to expand

the apertures of the beamline, which would require a significant redesign of the

beamline hardware.
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