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The ideal Halbach quad

• Imagine a permanent magnet geometry
in which the magnetization varies
continuously with φ, as shown

• This model problem can be used to
generate the segmented-piece solutions

• In order to analyze this geometry, it is
best to introduce Amperian currents…
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Amperian currents:

• The equivalent currents are found in a sheet
on the inner and outer radius (r1 and r2)

• Inside of the material, there is a bulk
equivalent current density
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Creating a “Green function”

• To solve for the fields due to these current
arrays we first note that for a current
sheet at ρ=a with cos(2φ) dependence, the
solutions for the vector potential inside and
outside of the sheet are

• The magnetic fields of this pure quadrupole
are given by
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Connecting field strength to the
current sheet

• The discontinuity in the azimuthal field is created
by the current sheet at ρ=a;

• Thus,                 or in terms of the field gradient,

for the single current sheet.
• For a radially distributed current density
(between r1 and r2), this result can be generalized
to give
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Application to permanent magnet case

• The contributions due to the boundaries at ρ=r1, r2;

    where Br is the peak remanent magnetic field of the PM
material.

• The contributions to the field gradient due to the bulk of the
magnetic material are

• The total field gradient for the pure quadrupole is
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For our case, a PMQ with 5 mm ID and Br=1.2 T, we have  
′ B = 600 T/m!



Segmented magnets

• The pure quadrupole is
impossible to build, but may be
well-approximated using
uniformly magnetized pieces

• Segmented slices (pizza-pie
with bites taken out) can be
analyzed using our methods

• Fourier analysis gives
equivalent Amperian current
densities at desired multipole,
and harmonics!

UCLA PMQ RADIA model

CESR collider final focus 

PMQ cross-section 



Fourier analysis of segmented PMQ

• M segments used (e.g. 16 for our
case)

• Interior region (straightforward,
summation of δ-functions)

• The inner/outer radii surfaces
produce analogous results
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,   where n = 2+ jM ,  j = 0,1,2...

This procedure approximates the 
sinusoidal magnetization with a 
series of δ-functions
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PMQ strength and higher terms

• Fundamental strength is derated from
perfect quadrupole by Fourier harmonics

• The next higher term is n=18! Relative
strength is

• Term is not large, and order is very high…
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Field gradient model

• Fixed RADIA solution
gives 550 T/m with
Br=1.2 T

• Very good linearity
• Model prediction:
         600 T/m
• Deviations due to:

– finite longitudinal (3D)
effects

– demagnetization0
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Measurements

• Hall probe scan: 550 T/m
• Consistency with beam
focus tuning (TRACE3D):
550 T/m

• Pulsed wire: 475 T/m
– Is pulse short enough for first
integral? Needs to be a δ-
function

– Frequency dependence of wire

Calibration setup for 
PMQ gradient measurement


