Analysis of Halbach Segmented Pure Permanent Magnet Quadrupole

J.B. Rosenzweig

January 22, 2004

The ideal Halbach quad

• Imagine a permanent magnet geometry in which the magnetization varies continuously with ϕ , as shown

$$\vec{M} = M_0 \left(\hat{\boldsymbol{\rho}} \sin(2\boldsymbol{\phi}) + \hat{\boldsymbol{\phi}} \cos(2\boldsymbol{\phi}) \right)$$

- This model problem can be used to generate the segmented-piece solutions
- In order to analyze this geometry, it is best to introduce Amperian currents...

• The equivalent currents are found in a sheet on the inner and outer radius $(r_1$ and $r_2)$

$$\vec{K} = \vec{M} \times \hat{n}$$

$$K_z = \pm M_0 \cos(2\phi), \ \rho = r, R$$

 Inside of the material, there is a bulk equivalent current density

$$\vec{J} = \vec{\nabla} \times \vec{M}$$

$$\vec{J}_z = \frac{3M_0}{\rho} \cos(2\phi)$$

Creating a "Green function"

 To solve for the fields due to these current arrays we first note that for a current sheet at $\rho=a$ with $\cos(2\phi)$ dependence, the solutions for the vector potential inside and outside of the sheet are $A_z = A_2 \cos(2\phi) \begin{cases} \rho^2, & \rho < a \\ \frac{a^4}{\rho^2}, & \rho > a \end{cases}$

· The magnetic fields of this pure quadrupole

are given by
$$\vec{B} = -2A_2 \begin{cases} \rho \sin(2\phi)\hat{\rho} + \rho \cos(2\phi)\hat{\phi}, & \rho < a \\ \frac{a^4}{\rho^3} \sin(2\phi)\hat{\rho} - \frac{a^4}{\rho^3} \cos(2\phi)\hat{\phi}, & \rho > a. \end{cases}$$

Connecting field strength to the current sheet

- The discontinuity in the azimuthal field is created by the current sheet at ρ =a; $\Delta B_{\phi}(\phi) = \mu_0 K_z(\phi) = \mu_0 K_0 \cos(2\phi) = 4A_2 a \cos(2\phi)$
- Thus, $A_2 = \frac{\mu_0 K_0}{4a}$ or in terms of the field gradient, $B' = 2A_2 = \frac{\mu_0 K_0}{2a} \propto \frac{K_0}{a}$

for the single current sheet.

• For a radially distributed current density $J_z = J_0(\rho)\cos(2\phi)$ (between r_1 and r_2), this result can be generalized to give $\mu_0 \stackrel{r_2}{\leftarrow} I_1(\rho) d\rho$

 $B' = \frac{\mu_0}{2} \int_{r_0}^{r_2} J_0(\boldsymbol{\rho}) d\boldsymbol{\rho}$

Application to permanent magnet case

• The contributions due to the boundaries at ρ = r_1 , r_2 ;

$$B' = \frac{\mu_0 M_0}{2} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = \frac{B_r}{2} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

where B_r is the peak remanent magnetic field of the PM material.

 The contributions to the field gradient due to the bulk of the magnetic material are

$$B' = \frac{3\mu_0 M_0}{2} \int_{r_1}^{r_2} \frac{d\rho}{\rho^2} = \frac{3}{2} B_r \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

The total field gradient for the pure quadrupole is

$$B' = 2B_r \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

For our case, a PMQ with 5 mm ID and B_r =1.2 T, we have

$$B' = 600 \text{ T/m!}$$

Segmented magnets

- The pure quadrupole is impossible to build, but may be well-approximated using uniformly magnetized pieces
- Segmented slices (pizza-pie with bites taken out) can be analyzed using our methods
- Fourier analysis gives equivalent Amperian current densities at desired multipole, and harmonics!

CESR collider final focus **PMQ** cross-section

Fourier analysis of segmented PMQ

- *M* segments used (e.g. 16 for our case)
- Interior region (straightforward, summation of δ -functions)

$$J_z = \frac{3}{\rho} \sum_{n=2,4,6...}^{\infty} a_n \cos(n\phi)$$

$$a_n = \frac{1}{2\pi} \sum_{m=1}^{M} \cos\left(\frac{2\pi}{M} \left[m - \frac{1}{2}\right]\right) \cos\left(\frac{2\pi n}{M} \left[m - \frac{1}{2}\right]\right)$$

$$a_n = \cos^n \left(\frac{\pi}{M}\right) \sin\left(\frac{n\pi}{M}\right) \frac{M}{n\pi}$$
, where $n = 2 + jM$, $j = 0,1,2...$

 The inner/outer radii surfaces produce analogous results

This procedure approximates the sinusoidal magnetization with a series of δ -functions

PMQ strength and higher terms

 Fundamental strength is derated from perfect quadrupole by Fourier harmonics

$$a_2 = \cos^2\left(\frac{\pi}{M}\right) \sin\left(\frac{2\pi}{M}\right) \frac{M}{2\pi}$$

M (segments)	a_2
8	0.77
12	0.89
16	0.94

• The next higher term is n=18! Relative strength is $\frac{a_n}{a_2} = \cos^{n-2}\left(\frac{\pi}{M}\right) \left(\frac{1-\binom{r_1}{r_2}^{n-1}}{1-\binom{r_1}{r_2}^2}\right)$

Term is not large, and order is very high...

Field gradient model

- Fixed RADIA solution gives 550 T/m with $B_r=1.2 \text{ T}$
- Very good linearity
- Model prediction:600 T/m
- Deviations due to:
 - finite longitudinal (3D) effects
 - demagnetization

Measurements

- Hall probe scan: 550 T/m
- Consistency with beam focus tuning (TRACE3D): 550 T/m
- Pulsed wire: 475 T/m
 - Is pulse short enough for first integral? Needs to be a $\delta\text{-}$ function
 - Frequency dependence of wire

Calibration setup for PMQ gradient measurement