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RF gun as microwave device

• Photoinjector guns are high gradient standing wave
devices

– Beam dynamics complex

– Space-charge and RF are large effects

• Need to understand (a lot!):
– Cavity resonances

– Coupled cavity systems

– Power dissipation

– External coupling

– Time-domain response

– Measurement and tuning procedures

• Reference: Chapter 7 Fundamentals of Beam  Physics



The photoinjector gun

Neptune RF gun 
with cathode plate removed

SPARC gun and solenoid



The 1.6 cell rf gun geometry

• Approximate with cylindrical symmetry

•  -mode, full ( /2) cell with 0.6 cathode cell

• How to calculate resonant frequencies?

Cathode 
plane

0.6 cell Full cell



Cavity resonances: the pill-box model
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• Pill-box model approximates

cylindrical cavities

• Resonances from Helmholtz

equation analysis

• Look for TM (axial field)

modes

• Conducting BCs
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Pill-box fields

• No longitudinal dependence
in fundamental

• Electromagnetic fields

• Stored energy
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A circuit-model view

• Lumped circuit
elements may be
assigned: L, C, and R.

• Resonant frequency

• Tuning by changing
inductance,
capacitance

• Power dissipation by
surface current (H)

Contours of constant
flux in 0.6 cell of gun
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Cavity shape and fields

• Irises needed for beam passage and RF coupling

• Fields near axis (in iris region) may be better represented
by spatial harmonics

• Higher (no speed of light) harmonics have nonlinear
(modified Bessel function) dependence on .

– Energy spread

– Nonlinear transverse RF forces

• Avoid re-entrant nose-cones, etc. Circle-arc sections are
close to optimum.
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Cavity coupling: simple model

• Circuit model allows simple
derivation of mode frequencies

• Ignore resistance in walls (does
not affect frequency much)

• Electric coupling is capacitive

• Off-axis slots can give
magnetic coupling (effectively
reverses sign in )

• Solve eigenvalue/eigenmode
equations
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Coupled cavity modes

• Secular equation

• Two eigenvalues

• Corresponding to eigenvectors

• Lower frequency when cells are in phase (0-mode)

• The higher frequency mode is the -mode, where
the excitation is 180 degrees out of phase in the
two cavity cells

– Higher frequency due to less near-axis fields

– Lower capacitance
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Finding frequencies of cells

• Real geometry, use
SUPERFISH simulation

• In simulation detune the
opposing cell

• 0.6 cell has frequency of
2854.01 MHz

• Full cell is slightly higher:
2854.60 MHz due to lower C

• These are the geometries
which produce “field”
balance

Full cell

0.6 cell



The coupled mode frequencies

• The -mode frequency is

2856.0 MHz as expected

• This mode needs to be
balanced (equal fields)

• Zero mode frequency is
2852.66 MHz. Note that
field arrows do not reverse

• The frequency separation is
~3.34 MHz according to
calculation
– This is sensitive to the iris

geometry as built



Measurement  and tuning of

frequencies
• Frequency response can be measured on a network analyzer

– Calibrated phase and amplitude response, calibrated frequency

• Two measurements: S11 (reflection) S21 (transmission)

• Resonance frequencies of individual cells and coupled modes

– Full cell. Remove cathode to detune 0.6 cell.

– 0.6 cell. S11 through (detuning) probe in full cell.

• Tuning via Slater’s theorem/circuit model guide
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Measurement of fields

• Use so-called “bead-pull” technique

– “Bead drop in gun, beam tube pointed upwards…

• Metallic or dielectric bead (on optical fiber)

• Metallic bead on-axis gives negative frequency shift (electric field
energy displaced)

– No magnetic effects on-axis for accelerating mode

• More complex if one has magnetic fields  (deflector)

Ez



Field balance and mode

separation
• Bead-pull technique is invasive

• Calibrate mode separation

– Slightly different than coupled

cavity model…

• Field balance possible in fast

cathode swap
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Other parameterizations
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• Fundamental problem:
the field balance is a
double valued function
of the mode splitting

• Full cell frequency is
tuned by insertable
(magnetic) tuners
(in=higher)

• If you find minimum
splitting, make full cell
higher in frequency



Final tuning

• Do not want the full-cell tuners re-entrant (breakdown)

• Cathode deformation using “tuning nut”

• Temperature tuning=44 kHz/degree

• Almost perfect balance between atmospheric index and
20° C above room temperature operation

Temperature
tuningCapacitive

tuning thru 
deformation



Power dissipation in walls

• Wave equation in conductors, harmonic solution

• Complex wavenumber into wall normal, gives
skin-depth

• Power is lost in a narrow layer (skin-depth) of the
wall by surface current excitation
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Power dissipation and Q

• Total power dissipated in walls (pill-box example)

• Internal quality factor (pill box)

• For ~2856 MHz (S-band), Q~12,000

• Other useful interpretations of Q

– Exponential response in time domain

– Frequency response half-width
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Frequency domain picture
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Cavity filling, emptying, and

external coupling

• Exponential response of

cavity voltage

• Controlled by loaded QL

•  Energy extraction by

– Radiation into waveguide

– Beam acceleration (high

average current systems)
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VSWR and 

• Measure reverse and forward

voltage

– Time domain

– NWA Smith chart

• Calculate VSWR

• We want critical coupling

• This is rc=1 on lower right

• Loaded Q
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Temporal response of the cavity

• Standing wave cavity fills
exponentially

• Gradual matching of
reflected and radiate power
(E2) from input coupler
– Reflected wave from input

coupler=re-radiated wave

• In steady-state, all power
goes into cavity (critical
coupling) so reflected
power is eventually
cancelled
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Voltage, power and acceleration

• The square of the cavity voltage is
proportional to the shunt impedance

• The accelerating field is The square of the
cavity voltage is proportional to the shunt
impedance per unit length

• The 1.6 cell gun S-band cavity has
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The 1.6 cell RF gun

• The design power for the Neptune gun is
P~6 MW

• The “accelerating” length of the gun is
Lg=0.0845 m

•  The average accelerating field is

• The peak on-axis accelerating field is ~
twice the average, or over 100 MV/m

E0 = P
 Z s

Lg

= 53 MV/m


