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Technologies

• Magnetostatic devices

– Computational modeling

– Map generation

• RF cavities

– 2 cell devices

– Multicell devices

– Computational modeling: map generation

• Short pulse lasers

• Diagnosis of electron beams



The photoinjector layout

ORION gun side view

SPARC gun and solenoid



Solenoid Design

• Electromagnet with iron yoke and field stiffeners/dividers

• Iron acts as magnetic equipotential.

• Use of magnetic circuit analogy for dipole gives field strength

ORION design has all coils in series

SPARC  design has four independent coils
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Solenoid field tuning

• No motion of heavy solenoid

• Uniform field possible

• Tune centroid of emittance

compensation lens by

asymmetric excitation of the

four coils

•  Simulation indicates 8 G

field at cathode.
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Effect of solenoid tuning on

beam dynamics

• Beam dynamics studied with HOMDYN

• SPARC/LCLS design surprisingly robust, may be fine-

tuned using this method
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Other emittance compensation

solenoid designs
• Lower gradients are

possible for integrated
photoinjectors

• Lower magnetic
focusing fields as well

• Fields closer to the
cathode for beam
control

• “Bucking” coil needed

• Example: PEGASUS
PWT injector
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Field null at cathode

Main coilBucking coil



Other solenoids: linac emittance

compensation
• In TW linac, second

order RF focusing is not
strong

• Generalize focusing in
envelope equation

• Example: for 20 MV/m
TW linac,

=1 (pure SW),

= 0 (pure TW), = 0.4 (SLAC TW)

+ 2b2,   b = cB0 /E0

for b2 =1, B0 =1.1 kG
SPARC linac solenoid, 
From LANL POISSON



Some practical considerations

• Power dissipation limited. Limit is roughly

700 A/cm2 in Cu

• Yoke saturation: avoid fields above 1 T in

the iron
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RF structures

• Photoinjectors are based

on high gradient standing

wave devices

• Need to understand:

– Cavity resonances

– Coupled cavity systems

– Power dissipation

– External coupling

• Simple 2-cell systems to

much more elaborate

devices… UCLA photocathode gun
with cathode plate remove



The “standard” rf gun

• Concentrate on simplest case

•  -mode, full ( /2) cell with 0.6 cathode cell

• Start with model



Cavity resonances
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• Pill-box model approximates

cylindrical cavities

• Resonances from Helmholtz

equation analysis

• Fields:

• Stored energy
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A circuit-model view

• Lumped circuit
elements may be
assigned: L, C, and R.

• Resonant frequency

• Tuning by changing
inductance,
capacitance

• Power dissipation by
surface current (H)

Contours of constant
flux in 0.6 cell of gun
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Cavity shape and fields

• Fields near axis (in iris region) may be better
represented by spatial harmonics

• Higher (no speed of light) harmonics have
nonlinear (modified Bessel function) dependence
on .

– Energy spread

– Nonlinear transverse RF forces

• Avoid re-entrant nose-cones, etc.
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Power dissipation and Q

• Power is lost in a narrow layer (skin-depth) of the

wall by surface current excitation

• Total power

• Internal quality factor

• Other useful interpretations of Q
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Cavity coupling

• Circuit model allows
simple derivation of mode
frequencies

• Solve eigenvalue problem

• Mode separation is
important

• In  1.6 cell gun
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Measurement of frequencies

• Frequency response can be measured on a network analyzer

• Resonance frequencies of individual cells and coupled modes

• Tuning via Slater’s theorem guide

Reflection measurement S11
(5-cell deflection mode cavity)
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Measurement of fields

• Use so-called “bead-pull”

technique

• Metallic of dielectric bead (on

optical fiber)

• Metallic bead on-axis gives

negative frequency shift

(electric field energy

displaced)

• More complex if one has

magnetic fields  (deflector)
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Temporal response of the cavity

• Standing wave cavity fills
exponentially

• Gradual matching of
reflected and radiate
power (E2) from input
coupler

• In steady-state, all power
goes into cavity (critical
coupling)

• Ideal VSWR is 1 (no beam
loading)
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Reading references

• Magnets: Chapter 6, section 2

• RF cavities: Chapter 7, sections 2-8


