
Lecture 4: Emittance

Compensation

J.B. Rosenzweig

USPAS, UW-Madision

6/30/04



Emittance minimization in the RF

photoinjector

• Thermal emittance limit

– Small transverse beam size

– Avoid metal cathodes?

• RF emittance

– Small beam dimensions

– Small acceleration field? Maybe not…

• Space charge emittance

– K.J.Kim treatment is very discouraging
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Space-charge emittance control?

• Kim model indicates
monotonic emittance growth
due to space-charge

• Multiparticle simulations at
LLNL (Carlsten) show
emittance oscillations,
minimization possible:
Emittance compensation

• Work extended by UCLA,
INFN scientists to give
analytical approach

• New high gradient design
developed and understood

•  Many new doors opened
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Intense beam dynamics in

photoinjector: a demanding problem

• Extremely large applied fields

– Violent RF acceleration (0 to ~3E8 m/s in < 100 ps)

– Large, possibly time-dependent external forces (rf and focusing
solenoids)

• Very large self-fields

– Longitudinal debunching (charge limit)

– Radial oscillations (single component plasma)

• Optimization of beam handling with large parameter space  and
collective effects. Multiparticle simulations are invaluable aid, but
time-consuming

• Understanding of non-equilibrium transport approached using rms
envelope equations…



Transverse dynamics model

• After initial acceleration, space-charge field is mainly
transverse (beam is long in rest frame).

• Force scales as -2 (cancellation of electric defocusing

with magnetic focusing)

• Force dependent almost exclusively on local value of
current density I / 2 (electric field simply from Gauss’
law)

• Linear component of self-force most important. We
initially assume that the beam is nearly uniform in r.

• The linear “slice” model…

• Extend linear model to include nonlinearities within slices

• Scaling of design physics with respect to charge, RF



The rms envelope equation

• The rms envelope dynamics for a cylindrically symmetric, non-
accelerating, space-charge dominated  beam are described by a nonlinear
differential equation

• Separate DE for each slice (tagged by ),

• Each slice has different current

• External focusing measured by betatron wave-number

• In solenoid, beam is rotating, so envelope coordinates are in rotating
Larmor frame with same wave-number

• Rigid rotator equilibrium (Brillouin flow) depends on local value of
current (line-charge density). “Pressure” forces negligible
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Equilibrium distributions and space

charge dominated beams
• Maxwell-Vlasov equilibria have

simple asymptotic forms,

dependent on parameter

• Emittance dominated gaussian

• Space-charge dominated uniform

• Uniform beam approximation very

useful
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The trace space model

• Each -slice component of the

beam is a line in trace space.

• No thermal effects

• No nonlinearities (lines are

straight!)
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Envelope oscillations about equilibria

• Beam envelope is non-equilibrium problem, however

• Linearizing the rms envelope equation about its equilibria gives

     Dependent on betatron wave-number, not local beam size or current

• Small amplitude envelope oscillations proceed at 21/2 times the
betatron frequency or assuming uniform beam distribution

This is the matched relativistic plasma frequency
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Phase space picture:

coherent oscillations

• All oscillations of space-
charge beam envelope
proceed about

– different equilibria,

– with different amplitude

– but at the same frequency

• Behavior leads to emittance
oscillations…but not damping
(yet)

• Qualitative explanation of
“1st compensation”, after gun,
before linac…

r

r

1 2 3

eq1

eq2
eq3

'

21< < 3

  x

x

Assume that beam is launched
at minimum (e.g. at cathode) 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

 

 

/
eq

, 
/(

K
r)1

/2
eq

2

(2K
r
)1/2z/2

Small amplitude oscillation model



Phase space picture:

coherent oscillations

• Emittance (area in phase
space) is maximized at

• Emittance is locally
minimized at

- the beam extrema!

• Fairly good agreement of
simple model with much
more complex beamline

• What about acceleration?
– In the rf gun, in booster linacs…
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Emittance damping: Beam envelope

dynamics under acceleration
• Envelope equation (w/o emittance), with acceleration, RF focusing

• New particular solution - the “invariant envelope” (generalized

Brillouin flow), slowly damping “fixed point”

• Angle in phase space is independent of current

• Corresponds exactly to entrance/exit kick (matching is naturally at

waists)

• Matching beam to invariant envelope yields stable linear emittance

compensation!
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Envelope oscillations near invariant

envelope, with acceleration
• Linearized envelope equation

• Homogenous solution (independent of current)

• Normalized, projected phase space area oscillates, seculary
damps as offset phase space (conserved!) moves in…
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Validation of  linear emittance

compensation theory

• Theory successfully describes “linear” emittance

oscillations

– “Slice” code (HOMDYN) developed that reproduce multiparticle

simulations. Much faster! Ferrario will lecture on this..

– LCLS photoinjector working point found with HOMDYN

Dash: HOMDYN

Solid: PARMELA



Nonlinear Emittance Growth

• Nonuniform beams lead to nonlinear fields and emitance growth

• It is well known from the heavy ion fusion community that
propagation of non-uniform distributions in equilibrium leads to
irreversible emittance growth (wave-breaking in phase space).
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of (r,r') distribution is infinite.

This example is past wave-breaking , and irreversible 

emittance growth has occurred. 

Fixed point is where space-charge force cancels applied (solenoid) force.
It is in the middle of the Debye sheath region. 



Non-equilibrium, nonlinear

“slice” dynamics

• Matching of envelope to “invariant”

envelope guarantees that we have linear

emittance compensation; is it courting

nonlinear emittance growth?

• Understanding obtained as before by:

– Heuristic analysis

– Computational models



Heuristic slab-model of

non-equilibrium laminar flow

• Laminar flow=no trajectory crossing, no wavebreaking in

phase space

• Consider first free expansion of slab (infinite in y, z)

beam (very non-equilibrium)

• Under laminar flow, the charge inside of a given electron

is conserved, and one may mark trajectories from initial

offset x0. Equation of motion
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2F x0( ) ,  F x0( ) = f ˜ x 0( )

0
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Free-expansion of slab beam

• Solution for electron positions:

• Distribution becomes more linear in

density with expansion

• Example case

• Wavebreaking will occur when final

x is independent of initial x0,

• In free-expanding slab, we have no

wave-breaking for any profile
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Slab-beam in a focusing channel

• Add uniform focusing to equation of motion,

• Solution         

    with

• Wavebreaking  occurs in this case for

•  For physically meaningful distributions,
smoothly, and wavebreaking occurs when

• For matched beam,             half of the beam wave-breaks!

• Stay away from equilibrium! When           there is little
wavebreaking, and irreversible emittance growth avoided.
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Extension to cylindrical

symmetry: 1D simulations
• Matched parabolic beam

shows irreversible emittance

growth after single betatron

period

• Grossly mismatched single

thin lens show excellent

nonlinear compensation

• Explanation for robustness

of first compensation

behavior
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Emittance growth and entropy

• Irreversible emittance
growth is accompanied by
entropy increase

• Far-from-equilibrium
thin-lens case shows large
distortion at beam
maximum, near perfect
reconstruction of initial
profile

• Small wave-breaking
region in beam edge
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Trace space picture
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• Wave-breaking occurs

near beam edge at

emittance maximum

• Fortuitous folding in

trace space near “fixed”

point minimizes final

emittance

Trace space plots of a freely expanding, 
initially Gaussian beam at the initial 
emittance (a) maximum and (b) minimum.



Multiparticle simulation picture:

LCLS case (Ferrario scenario)
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• Case I:  initially uniform beam (in r
and t)
•  Spatial uniformity reproduced after
compensation
•  High quality phase space
•  Most emittance is in beam
longitudinal tails (end effect)
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Multiparticle simulation picture:

Nonuniform beam

• Case II:  Gaussian beam
•  Most emittance growth due to
nonlinearity
•  Large halo formation
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The big picture: scaling of design

parameters in photoinjectors

• The “beam-plasma” picture based on envelopes
gives rise to powerful scaling laws

• RF acceleration also amenable to scaling

• Scale designs with respect to:

– Charge

– RF wavelength

• Change from low charge (FEL) to high charge
(HEP, wakefield accelerator) design

• Change RF frequency from one laboratory to
another (e.g. SLAC X-band, TESLA L-band)



Charge scaling

• Keep all accelerator/focusing parameters identical

• To keep plasma the same, the density and aspect ratio of
the bunch must be preserved

• The contributions to the emittance scale with varying
powers of the beam size

• Space-charge emittance

• RF/chromatic aberration emittance

• Thermal emittance

• Fortuitously, beam is SC dominated, and these emittancs
do not affect the beam envelope evolution; compensation
is preserved.
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Wavelength scaling

• First, must make acceleration dynamics

scale:      and

• Focusing (betatron) wavenumbers must

also scale (RF is naturally scaled,           ).

Solenoid field scales as

• Correct scaling of beam size, and plasma

frequency:

• All emittances scale rigorously as

E0
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Q

n



Scaling studies: envelope

• PARMELA simulations used to

explore scaling

• Charge scaling (non-optimized

case) is only approximate. At

large beam charges (beam sizes),

beam is not negligibly small

compared to RF wavelength.

• Wavelength scaling is exact, as

expected.
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Scaling studies: emittance
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• Simulation studies

verify exact scaling of
emittance with 

• Charge scan of

simulations gives

information about

“family” of designs

• Use to mix scaling

laws…

Scaling of emittance with charge (no thermal
emittance), fit assumes addition in squares.

Evolution of emittance, normalized to  



Brightness, choice of charge and

wavelength

• Charge and pulse length scale together as 

• Brightness scales strongly with ,

• This implies low charge for high brightness

• What if you want to stay at a certain charge

(e.g. FEL energy/pulse)

• Mixed scaling:

• For Ferrario scenario, constants from simulation:
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Some practical limits on scaling

• Scaling of beam size
– laser pulse length and jitter difficult at small 
– emittance measurements difficult at small 

• Scaling of external forces
– Electric field is “natural” - high-gradient implies short

 because of breakdown limits,.

– RF limitations may arise in power considerations

– Focusing solenoid              dimensions scale as .
Current density scales as

B 1

Jsol
2



Exercises

Problem 5: Assume the LCLS photoinjector has gradient of
20 MV/m, and is run on the invariant envelope with =1,
achieving a normalized emittance of 0.9 mm-mrad at 100
A current. At the final energy of 150 MeV, what is the
ratio of the space-charge term to the emittance term in the
envelope equation?

Problem 6: (a) For the parameters of the LCLS design
family (Ferrario scenario), if one desires to run at 1 nC,
what is the optimum  RF wavelength to choose to
minimize the emittance? (b) If you operate at an RF
wavelength of 10.5 cm, what choice of charge maximizes
the brightness?


