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Emission processes

• Thermionic emission

• Field emission

• Photoemission

• Spin polarization

• “Bulk” effects limiting emission

• Look at microscopic mechanisms…



Microscopic models: Metals

• In a metallic crystal lattice
the outer electrons, valence
electrons, orbits overlap and
are shared by all the atoms
in the solid.

•  These electrons are not
bound and are free to
conduct current, typically
the free electron density in
a metal is 1023 cm-3. They
form a plasma gas.
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Microscopic Models: Semiconductors

• In a semiconductor such as
GaAs the valence electrons
are bound in covalent bonds.

• At low temperatures the
electrons are all bound but at
higher temperatures or with
doping they are liberated to
contribute to current
conduction.

• A semiconductor acts like an
insulator at low temperatures
and a conductor at high
temperatures.
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Band structure diagrams

• A material’s
internal structure
dictates its
electronic
characteristics

• This is displayed
by Brillouin
diagrams (U-k)

• Three distinct
possibilities
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Density of states and Fermi energy

• In solid, one has at low temperature, a “sea” of electrons

forming a sphere in k-space. This surface is at the Fermi

energy,

• Density of states is obtained by differentiating N by E

• In Fermi-Dirac statistics, the energy levels are populated as

• To calculate emission one must sum relevant electrons as

  

E f =
h
2

2m
k f
2

=
h
2

2m
3 2 N

V

 

 
 

 

 
 

2 / 3

  

D E( )
dN

dE
=

V

2 2

2m

h
2

 

 
 

 

 
 

3 / 2

E =
4 (2m)3 / 2

h3
E

f (E) =
1

e(E Ef ) / KT +1

dN = D(E) f (E)dE



Thermionic emission

• The work function W is defined as the distance
from the Fermi energy to the potential of the
metal m

• To calculate the thermionic current, one must
sum only the electrons going in the right
direction (x). Flux:

• Integrate to obtain the Richardson-Dushman eqn.
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Enhanced emission from heating

• At room temperature,
there is no thermionic
current for metals

• At high temperature
(>1000 K) there is
notable current

• Metalloids (LaB6, etc)
have much better
performance

• Applications of strong
fields helps!
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The Schottky Effect

• Application of external fields lowers work

function (barrier suppression)

• Schottky enhancement factor
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Field (cold) emission

• The Schottky effect is
accompanied by quantum
tunneling, because of the finite
width of the barrier

• These effects are summarized
in the Fowler-Nordheim
relation (E is the electric field):

• This is a very fast function of
E!

• One also introduces ad hoc
field enhancement factor 
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Measurement of 

• Fit electron emission
current to electric field
(Fowler-Nordheim
plot)

• Fit radiation from RF
cavities to Fowler-
Nordheim

• Enhancement always
very large (>40)
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Photoemission in metals

• Photoemission occurs for metals when the photon energy
excedes the work function

• For very high photon intensity, multiphoton effects may
occur, emission with

• Field enhancement from Schottky barrier lowering is

• Useful in high field RF photoinjectors!

• Quantum efficiency (QE)

    is low (<10-3) because of electron-electron scattering in
conduction band

– Electrons lose 1/2 of their energy on average in collision

– Low QE  gives risk of laser-surface damage for desired charge.
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h >W = 4.5 eV in Cu.
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= Ne /Nph = Ne h /Ulaser



Photoemission in semiconductors

• Cesiated surfaces good

– Negative electron affinity (NEA)

– CsKSb (high QE at 500 nm illumination!)

– Cs2Te

• Very high QE possible because scattering is

electron-phonon in semiconductor

• High spin polarization from strained lattices



Polarized electron emission from strained

GaAs cathode

>80% polarization obtained; beats NLC requirments
Low photon energy! (<1.5 eV)



Charge limit observed from

SLAC polarized electron source

Internal space-
charge effect



Enhanced doping of GaAs

 allows fast recovery from charge limit
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DC-field cathodes

• Switching options

– Thermionic heating, gated voltage (klystron)

– Photoemission

• Gated voltage problems

– Laminar flow of current with space-charge

– Child-Langmuir limit on current density

– Capture of beam into RF buckets (emittance
growth)


