Electron Emission and Near Cathode Effects Lecture 3

J.B. Rosenzweig

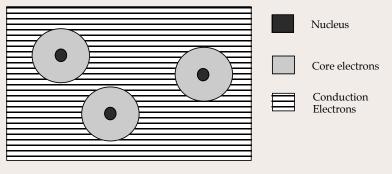
UCLA Dept. of Physics and Astronomy

USPAS, 6/28/04

Emission processes

- Thermionic emission
- Field emission
- Photoemission
- Spin polarization
- "Bulk" effects limiting emission
- Look at microscopic mechanisms...

Microscopic models: Metals

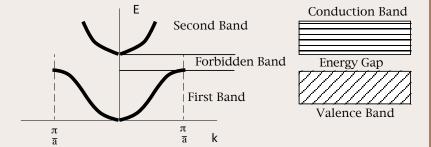


DRUDE'S MODEL OF AN ELECTRON "GAS"

- In a metallic crystal lattice the outer electrons, *valence electrons*, orbits overlap and are shared by all the atoms in the solid.
- These electrons are not bound and are free to conduct current, typically the free electron density in a metal is 10²³ cm⁻³. They form a plasma gas.

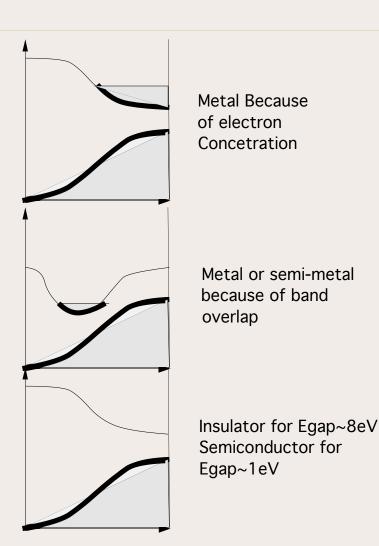
Microscopic Models: Semiconductors

- In a semiconductor such as GaAs the valence electrons are bound in covalent bonds.
- At low temperatures the electrons are all bound but at higher temperatures or with doping they are liberated to contribute to current conduction.
- A semiconductor acts like an insulator at low temperatures and a conductor at high temperatures.



Band structure diagrams

- A material's internal structure dictates its electronic characteristics
- This is displayed by Brillouin diagrams (*U-k*)
- Three distinct possibilities



Density of states and Fermi energy

• In solid, one has at low temperature, a "sea" of electrons forming a sphere in k-space. This surface is at the *Fermi* energy, \hbar^2 \hbar^2 $(N)^{2/3}$

$$E_f = \frac{\hbar^2}{2m} k_f^2 = \frac{\hbar^2}{2m} \left(3\pi^2 \frac{N}{V} \right)^{2/3}$$

Density of states is obtained by differentiating N by E

$$D(E) = \frac{dN}{dE} = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E} = \frac{4\pi (2m)^{3/2}}{\hbar^3} \sqrt{E}$$

• In Fermi-Dirac statistics, the energy levels are populated as

$$f(E) = \frac{1}{e^{(E-E_f)/KT} + 1}$$

To calculate emission one must sum relevant electrons as

$$dN = D(E)f(E)dE$$

Thermionic emission

- The work function W is defined as the distance from the Fermi energy to the potential of the metal ϕ_m
- To calculate the thermionic current, one must sum only the electrons going in the right direction (x). Flux:

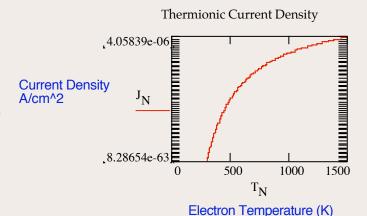
direction (x). Flux:

$$I = A \int q v_x dN = \int_{E_f + q\phi_m}^{\infty} \frac{4A\pi q(2m)^{3/2}}{h^3} v_x \sqrt{E} e^{-(E-E_f)/KT} dE$$
The formula of the circumstance of the circumstance

• Integrate to obtain the *Richardson-Dushman* eqn.

$$I \propto AT^2 \exp(\frac{-q\phi_m}{KT})$$

Enhanced emission from heating



Calculation for Cu

- At room temperature, there is no thermionic current for metals
- At high temperature (>1000 K) there is notable current
- Metalloids (LaB₆, etc) have much better performance
- Applications of strong fields helps!

The Schottky Effect

• Application of external fields lowers work function (barrier suppression)

$$\exp(\frac{-q\phi_m}{KT}) \Rightarrow \exp(\frac{-q[\phi_m - V_{external}]}{KT})$$

$$I_S \propto AT^2 \exp(\frac{-q[\phi_m - V_{external}]}{KT})$$

Schottky enhancement factor

$$I_S = I_0 \exp\left(\frac{qV_{external}}{KT}\right)$$

Field (cold) emission

External Field

• The Schottky effect is accompanied by quantum tunneling, because of the finite width of the barrier

• These effects are summarized in the Fowler-Nordheim relation (*E* is the electric field):

$$I_F = 6.2 \times 10^6 \frac{(\mu/\phi)^{1/2}}{\alpha^2(\phi + \mu)} E^2 \exp(-6.8 \times 10^7 \phi^{3/2} \alpha / E)$$

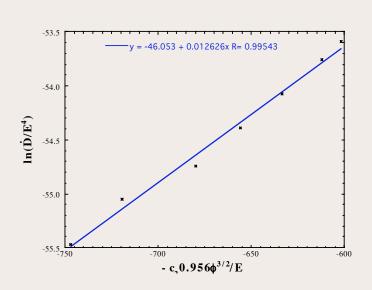
- This is a very fast function of *E!*
- One also introduces *ad hoc* field enhancement factor β

Measurement of β

- Fit electron emission current to electric field (Fowler-Nordheim plot)
- Fit radiation from RF cavities to Fowler-Nordheim

$$\overset{\circ}{D} \propto J(\beta E_p) E_p^2 \propto \beta E_p^4 \exp \left[-c_2 \phi^{3/2} \left[\frac{0.956}{\beta E_p} - \frac{1.06 c_3^2}{\phi^2} \right] \right]$$

• Enhancement always very large (>40)



Data from UCLA RF gun

Photoemission in metals

- Photoemission occurs for metals when the photon energy excedes the work function hv > W = 4.5 eV in Cu.
- For very high photon intensity, multiphoton effects may occur, emission with nhv > W
- Field enhancement from Schottky barrier lowering is

$$I = I_0 \exp((h\nu - W)^2) \propto (h\nu - W)^2$$

- Useful in high field RF photoinjectors!
- Quantum efficiency (QE)

$$\eta = N_{e-}/N_{ph} = N_{e-}h\nu/U_{laser}$$

is low (<10⁻³) because of electron-electron scattering in conduction band

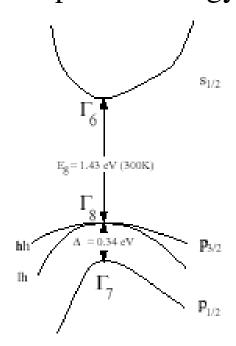
- Electrons lose 1/2 of their energy on average in collision
- Low QE gives risk of laser-surface damage for desired charge.

Photoemission in semiconductors

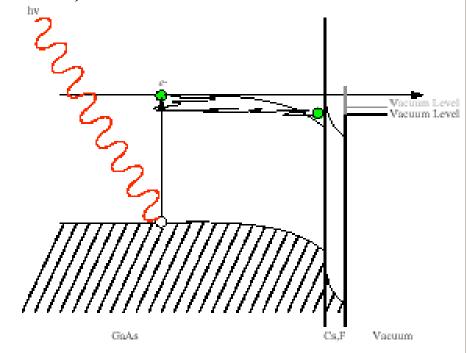
- Cesiated surfaces good
 - Negative electron affinity (NEA)
 - CsKSb (high QE at 500 nm illumination!)
 - $-Cs_2Te$
- Very high QE possible because scattering is electron-phonon in semiconductor
- High spin polarization from strained lattices

Polarized electron emission from strained GaAs cathode

>80% polarization obtained; beats NLC requirments Low photon energy! (<1.5 eV)

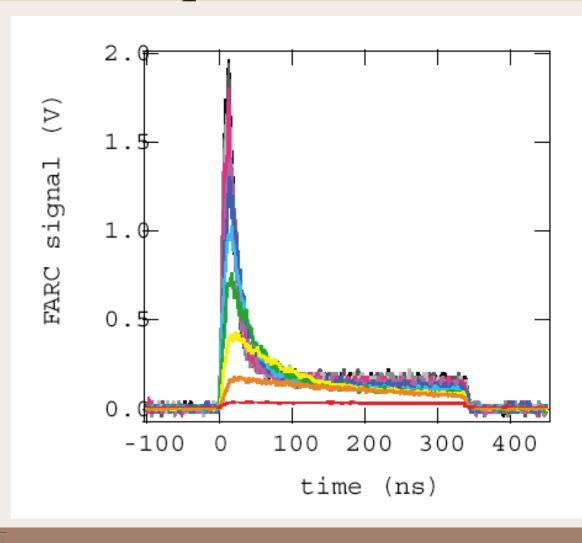


GaAs band structure in vicinity of Γ point



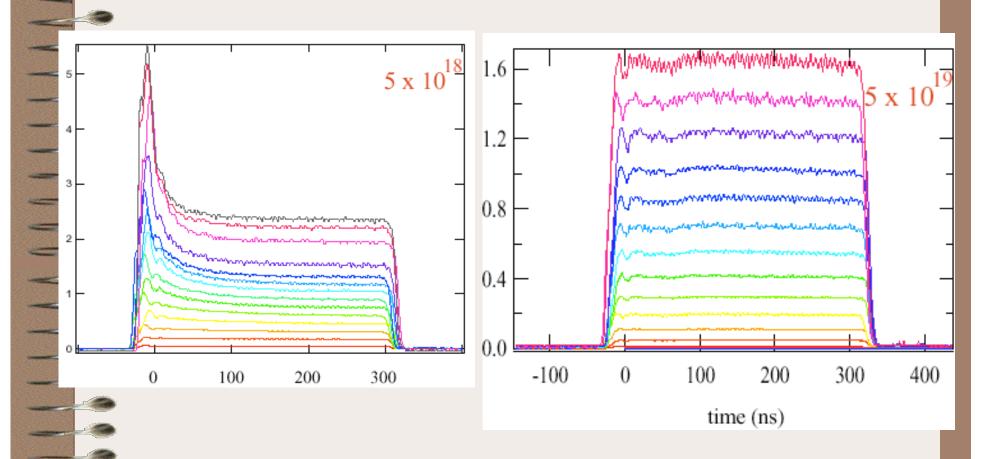
NEA Surface

Charge limit observed from SLAC polarized electron source

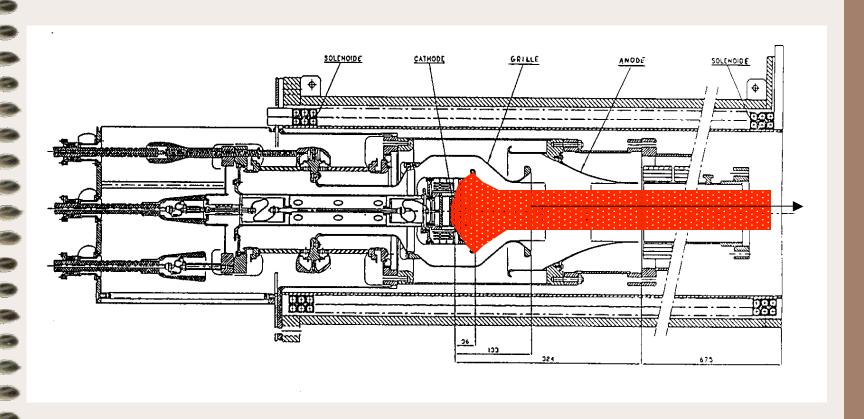


Internal spacecharge effect

Enhanced doping of GaAs allows fast recovery from charge limit



DC electron source with Pierce electrode geometry



DC-field cathodes

- Switching options
 - Thermionic heating, gated voltage (klystron)
 - Photoemission
- Gated voltage problems
 - Laminar flow of current with space-charge
 - Child-Langmuir limit on current density
 - Capture of beam into RF buckets (emittance growth)