
Overview of Beam Physics

Lecture 2



Electrodynamics

• Start with Maxwell equations (mks)

Where the fields obey the constitutive relations

• Continuity of sources implied

• Charged particles obey the Lorentz force equation,

With a generalization of the momentum p.
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Relativistic dynamical quantities

• Velocity normalized to speed of light

• Momentum is defined relativistically as

with      being the rest mass (nonrel. limit), and

• The energy U and momentum are related by

4-vector invariant length (like space-time)
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Relativistic equations of motion

• Purely magnetic forces yield no change in
energy, as force is normal to instantaneous
motion,

• Transverse equation of motion has larger
inertial mass

• Longitudinal acceleration with electric
field gives change in , different scaling of

inertial mass
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EM Fields in special relativity

• Longitudinal fields are “Lorentz invariant”

• Transverse fields (i.e. self fields in beam)

• In beam rest frame            and

“extra” factors of inertial mass…
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Hamiltonians in special relativity

• A Hamiltonian is a function of coordinates and
“canonical momentum” which gives the
equations of motion

• It is constructed from a Lagrangian

• A Hamiltonian can rigorously give equations of
motion, and constants of the motion, i.e. H,

˙ x i =
H
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,   ˙ p i =
H
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.

  
H

r 
x ,

r 
p ( ) =

r 
p 

r ˙ x L pi

L

˙ x i

˙ H =
H

t
; H independent of time is constant.



Relativistic dynamics

• Need potentials       for variational analysis

• The Lorentz force can be written as

• Relations between energy/momenta and

potentials can be seen
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The relativistic Hamiltonian

• From the 4-vector relation of energy and

momentum,

or

• Canonical variables simply related to

familiar mechanical variables (U,p)
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Transformations of Hamiltonian

• Transform to new canonical variables to

make the Hamiltonian constant?

• Example: wave with phase velocity

• Galilean transformation

• New Hamiltonian

• Example: traveling wave in accelerator…

v
= z v t p = pz

˜ H , p( ) = H , p( ) v p .



Traveling wave Hamiltonian

• Field and vector potential

• 1D COM Hamiltonian:

• In terms of mechanical momentum for
plotting (“algebraic” Hamiltonian, not for
equations of motion)
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Phase plane plots

• With algebraic form,
for a given H, choose ,

can determine p.

• Plot motion along
constant H contours

• Example: longitudinal
motion in small
“potential” case, typical
of ion linacs and
circular accelerators
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Phase space, general considerations

• Phase space density

distribution:

• Number of particles near a

phase space point is

• In beam physics, we often

will have 2D projections of

phase space, i.e. (x,px)

• Motion uncoupled in x,y,

and z.
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Liouville theorem

• Vlasov equation

• For Hamiltonian systems:

• If particle number is conserved

• Conservation of phase space density:
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Design trajectory and paraxial rays

• Trajectories measured
with respect to idealized
design

• Small angles assumed;
paraxial rays

• Equations of motion
parameterized using z as
independent variable
instead of t:

Design trajectory

paraxial rays
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Example: equations of motion in

magnetic quadrupole

• Magnetic field (normal)

• Magnetic force

• Equation of motion

• Simple harmonic
oscillator form:
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Motion in uniform magnetic field

x

y

z

• Field

• Lorentz force

• Uniform motion in z

• Transverse circle  at
cyclotron frequency.

• Radius related to

Define:

• Helix in general, angle
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Solenoid focusing

• Particles pick up     in
fringe field

                     or

• Integrate, to find

• Result known as Busch’s
theorem

• Assume particles are
“born” in region with no
magnetic field…

Symmetry 
axis

Coils

Magnetic field
lines

Charged particle 
test trajectory

Iron for magnetic 
flux return p

B
2

Bz
z

=0

1
B =

Bz
z

p q vzB
t1

t2

dt = q B
z1

z2

dz = q 0

2

Bz
zz1

z2

=0

dz = q 0

2

dBz
dzz1

z2

=0

dz

      = q 0

2
Bz z2( ) Bz z1( )[ ] = q 0

2
B0



The Larmor Frame

particle
trajectory

initial position

xL
c

later position

y

yL

xL

• Note radius of curvature R is
1/2 of offset . Particle passes
through origin!

• A frame defined by particle
and origin rotates with
Larmor frequency

• In Larmor frame, equations of
motion are simple harmonic
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Distributions and equilibrium

• A distribution can be in equilibrium under

application of linear force

• Separability:

• Vlasov equilibrium

• Separated equations:

• Momentum solution

•  Solution for linear restoring force in x:

• Self-forces (space-charge) are nonlinear in x,

Maxwell-Vlasov equilibria not Gaussian.
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RMS envelope equation

• Want information on extent of distributions

• Look at RMS envelope

• Take derivatives
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RMS Emittance and the Envelope

• The RMS envelope equation can be put in
standard form by noting that the rms emittance

is constant under of linear forces

• Also, with this assumption,

and

• The emittance enters the envelope equation as a
pressure-like term

• Example solution: equilibrium
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• In electron sources we have strong acceleration

• Acceleration introduces “adiabatic” damping

• This enters into the envelope as

• In standard form

where we have introduced the normalized
emittance

Inclusion of Acceleration 
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Busch’s theorem:

magnetization emittance

• If particles are “born” in magnetic field,
then they have canonical angular
momentum. Upon leaving field, they have
rms transverse momentum

• This can be translated to normalized
emittance
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Reading references

• Review Chapter 1 sections (all) concerning

dynamics and phase space

• Review Chapter 2 sections (1,3-6)

concerning motion in magnetic fields and

linear focusing

• Review Chapter 5 sections (1-3, 5)

concerning distributions and envelopes


