Overview of Beam Physics

Lecture 2

Electrodynamics

Start with Maxwell equations (mks)

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \cdot \vec{D} = \rho_e \qquad \vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}_e \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial B}{\partial t}$$

Where the fields obey the constitutive relations

$$\vec{D} = \varepsilon(\vec{D})\vec{E} \qquad \vec{B} = \mu(\vec{H})\vec{H}$$

- $\vec{D} = \varepsilon(\vec{D})\vec{E} \qquad \vec{B} = \mu(\vec{H})\vec{H}$ Continuity of sources implied $\vec{\nabla} \cdot \vec{J}_e + \frac{\partial \rho_e}{\partial t} = 0$
- Charged particles obey the Lorentz force equation,

$$\frac{d\vec{p}}{dt} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

With a generalization of the momentum p.

Relativistic dynamical quantities

- Velocity normalized to speed of light $\vec{v} = \vec{\beta}c$
- Momentum is defined relativistically as

$$\vec{p} = \gamma m_0 \vec{v} \equiv \vec{\beta} \gamma m_0 c$$

with m_0 being the rest mass (nonrel. limit), and

$$\gamma = \left(1 - \left(\vec{v}^2 / c^2\right)\right)^{-1/2}$$

• The energy U and momentum are related by 4-vector invariant length (like space-time)

$$\vec{p}^2 c^2 - U^2 = -(m_0 c^2)^2$$
 $U = \gamma m_0 c^2$

Relativistic equations of motion

- Purely magnetic forces yield no change in energy, as force is normal to instantaneous motion, $dU = \vec{v} \cdot d\vec{p}$
- Transverse equation of motion has larger inertial mass

$$\gamma m_0 \frac{d\vec{v}}{dt} = q \left(\vec{v} \times \vec{B} \right)$$

• Longitudinal acceleration with electric field gives change in γ , different scaling of inertial mass $\gamma^3 m_0 \frac{dv_{\parallel}}{dt} = qE_0$

EM Fields in special relativity

- Longitudinal fields are "Lorentz invariant"
- Transverse fields (*i.e.* self fields in beam)

$$\vec{E}_{\perp} = \gamma \left(\vec{E}_{\perp}' - \vec{v} \times \vec{B}_{\perp}' \right)$$

$$\vec{B}_{\perp} = \gamma \left(\vec{B}_{\perp}' + \frac{1}{c^2} \vec{v} \times \vec{E}_{\perp}' \right)$$

• In beam rest frame $\vec{B}'_{\perp} = 0$ and

$$\vec{F}_{\perp} = q \left(\vec{E}_{\perp} + \vec{v} \times \vec{B}_{\perp} \right) = q \vec{E}_{\perp} \left(1 - \beta^2 \right) = \frac{q E_{\perp}}{\gamma^2}$$

"extra" factors of inertial mass...

Hamiltonians in special relativity

• A Hamiltonian is a function of coordinates and "canonical momentum" which gives the equations of motion $\dot{x}_i = \frac{\partial H}{\partial p_i}, \ \dot{p}_i = -\frac{\partial H}{\partial x_i}.$

• It is constructed from a *Lagrangian*

$$H(\vec{x}, \vec{p}) = \vec{p} \cdot \dot{\vec{x}} - L \qquad p_i \equiv \frac{\partial L}{\partial \dot{x}_i}$$

• A Hamiltonian can rigorously give equations of motion, and *constants* of the motion, *i.e. H*,

$$\dot{H} = \frac{\partial H}{\partial t}$$
; H independent of time is constant.

Relativistic dynamics

• Need potentials (ϕ_e, \vec{A}) for variational analysis

$$\vec{E} = -\vec{\nabla}\phi_{\rm e} - \frac{\partial \vec{A}}{\partial t}$$
 $\vec{B} = \vec{\nabla} \times \vec{A}$

• The Lorentz force can be written as

$$\vec{F}_{L} = \frac{d\vec{p}}{dt} = q(\vec{E} + \vec{v} \times \vec{B})$$

$$= q \left[-\vec{\nabla}\phi_{e} - \frac{\partial\vec{A}}{\partial t} - (\vec{v} \cdot \vec{\nabla})\vec{A} \right] = q \left[-\vec{\nabla}\phi_{e} - \frac{d\vec{A}}{dt} \right]$$

 Relations between energy/momenta and potentials can be seen

$$p_{c,i} = p_i + qA_i \qquad H = U + q\phi_e$$

The relativistic Hamiltonian

• From the 4-vector relation of energy and momentum,

$$(H - q\phi_{e})^{2} = (\vec{p}_{c} - q\vec{A})^{2}c^{2} + (m_{0}c^{2})^{2}$$

$$H = \sqrt{(\vec{p}_{c} - q\vec{A})^{2}c^{2} + (m_{0}c^{2})^{2}} + q\phi_{e}$$

• Canonical variables simply related to familiar *mechanical* variables (*U*,*p*)

Transformations of Hamiltonian

- Transform to new canonical variables to make the Hamiltonian constant?
- Example: wave with phase velocity v_{φ}
- Galilean transformation $\zeta = z v_{\varphi}t$ $p_{\xi} = p_{z}$
- New Hamiltonian $\tilde{H}(\zeta, p_{\zeta}) = H(\zeta, p_{\zeta}) v_{\phi} p_{\zeta}$.
- Example: traveling wave in accelerator...

Traveling wave Hamiltonian

Field and vector potential

$$E_z(z-v_{\phi}t) = -\frac{\partial A_z}{\partial t} = E_0 \sin\left[k_z(z-v_{\phi}t)\right], \qquad A_z(z-v_{\phi}t) = -\frac{E_0}{k_z v_{\phi}} \cos\left[k_z(z-v_{\phi}t)\right],$$

• 1D COM Hamiltonian:

$$H = \sqrt{\left(p_{z,c} + \frac{qE_0}{k_z v_{\phi}} \cos\left[k_z (z - v_{\phi} t)\right]\right)^2 c^2 + \left(m_0 c^2\right)^2}$$

• In terms of mechanical momentum for plotting ("algebraic" Hamiltonian, *not* for equations of motion)

$$\tilde{H}(\zeta, p_{\zeta}) = \sqrt{p_{\zeta}^{2}c^{2} + (m_{0}c^{2})^{2}} - v_{\varphi} p_{\zeta} + \frac{qE_{0}}{k_{z}}\cos[k_{\zeta}\zeta]$$

Phase plane plots

- With algebraic form, for a given H, choose ζ , can determine p.
- Plot motion along constant *H* contours
- Example: longitudinal motion in small "potential" case, typical of ion linacs and circular accelerators

Phase space, general considerations

- Phase space density distribution: $f(\vec{x}, \vec{p}, t)$
- Number of particles near a phase space point $isf(\vec{x}, \vec{p}, t)d^3xd^3p$
- In beam physics, we often will have 2D projections of phase space, *i.e.* (x,p_x)
- Motion uncoupled in *x*, *y*, and *z*.

Particle distribution in phase space projection, approximated by f

Liouville theorem

- Vlasov equation $\frac{df}{dt} = \frac{\partial f}{\partial t} + \vec{x} \cdot \vec{\nabla}_{\vec{x}} f + \vec{p} \cdot \vec{\nabla}_{\vec{p}} f$
- For Hamiltonian systems:

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \sum_{i} \left(\frac{dx_{i}}{dt} \frac{\partial f}{\partial x_{i}} + \frac{dp_{i}}{dt} \frac{\partial f}{\partial p_{i}} \right)$$

$$= \frac{\partial f}{\partial t} + \sum_{i} \left(\frac{\partial H}{\partial p_{i}} \frac{\partial f}{\partial x_{i}} - \frac{\partial H}{\partial x_{i}} \frac{\partial f}{\partial p_{i}} \right)$$

$$= \frac{\partial f}{\partial t} + \sum_{i} \left(\frac{\partial H}{\partial p_{i}} \frac{\partial H}{\partial x_{i}} \frac{df}{dH} - \frac{\partial H}{\partial x_{i}} \frac{\partial H}{\partial p_{i}} \frac{df}{dH} \right) = \frac{\partial f}{\partial t}$$

- If particle number is conserved $\frac{\partial f}{\partial t} = 0$
- Conservation of phase space density: $\frac{df}{dt} = 0$.

Design trajectory and paraxial rays

- Trajectories measured with respect to idealized design
- Small angles assumed; paraxial rays

$$p_{x,y} << p_z \cong \left| \vec{p} \right|$$

• Equations of motion parameterized using z as independent variable instead of t: $x' = \frac{dx}{dz} = \frac{1}{v_z} \frac{dx}{dt} = \frac{\dot{x}}{v_z}$

Example: equations of motion in magnetic quadrupole

Magnetic field (normal)

$$\vec{B}_2 = B'(y\hat{x} + x\hat{y})$$

Magnetic force

$$\vec{F}_{\perp} = qv_z \vec{z} \times \vec{B}_2 = qv_z B'(y\hat{y} - x\hat{x})$$

Equation of motion

$$x'' = \frac{F_x}{\gamma m_0 v_0^2} = -\frac{qB'}{p_0} x \qquad y'' = \frac{F_y}{\gamma m_0 v_0^2} = \frac{qB'}{p_0} y$$

Solution:
$$x = x_0 \cos \left[\kappa_0 (z - z_0) \right] + \frac{x_0'}{\kappa_0} \sin \left[\kappa_0 (z - z_0) \right]$$

Motion in uniform magnetic field

- Field $\vec{B} = B_0 \hat{z}$
- Lorentz force

$$\begin{split} \frac{dp_z}{dt} &= 0, \\ \frac{d\vec{p}_\perp}{dt} &= q \Big(\vec{v}_\perp \times \vec{B} \Big) = \frac{qB_0}{\gamma m_0} \Big(\vec{p}_\perp \times \hat{z} \Big). \end{split}$$

- Uniform motion in z
- Transverse circle at cyclotron frequency.

$$\frac{d^{2}v_{x}}{dt^{2}} + \omega_{c}^{2}v_{x} = 0, \quad \frac{d^{2}v_{y}}{dt^{2}} + \omega_{c}^{2}v_{y} = 0. \quad \omega_{c} = \frac{qB_{0}}{\gamma m_{0}}$$

• Radius related to p_{\perp} $p_{\perp}(\text{MeV/c}) = 299.8 \cdot B_0(T) R(m)$

Define: $BR = p_{\perp} (\text{MeV/c})/299.8$

• Helix in general, angle p_z/p_\perp

Solenoid focusing

• Particles pick up P_{\perp} in fringe field

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho B_{\rho} = -\frac{\partial B_{z}}{\partial z} \quad \text{Or} \quad B_{\rho} \cong -\frac{\rho}{2} \frac{\partial B_{z}}{\partial z} \bigg|_{\rho=0}$$

• Integrate, to find

$$\Delta p_{\phi} \cong q \int_{t_1}^{t_2} v_z B_{\rho} dt = q \int_{t_1}^{z_2} B_{\rho} dz = -q \frac{\rho_0}{2} \int_{t_1}^{z_2} \frac{\partial B_z}{\partial z} \bigg|_{\rho=0} dz = -q \frac{\rho_0}{2} \int_{t_1}^{z_2} \frac{dB_z}{dz} \bigg|_{\rho=0} dz$$
$$= -q \frac{\rho_0}{2} \Big[B_z(z_2) - B_z(z_1) \Big] = -q \frac{\rho_0}{2} B_0$$

- Result known as Busch's theorem
- Assume particles are "born" in region with no magnetic field...

The Larmor Frame

- Note radius of curvature R is 1/2 of offset ρ . Particle passes through origin!
- A frame defined by particle and origin rotates with Larmor frequency

$$\omega_L \equiv \frac{d\theta_L}{dt} = \frac{\omega_c}{2} = \frac{qB_0}{2\gamma m_0}$$

In Larmor frame, equations of motion are simple harmonic

$$\ddot{x}_{L} + \omega_{L}^{2} x_{L} = 0, \ddot{y}_{L} + \omega_{L}^{2} y_{L} = 0,$$

$$x''_{L} + k_{L}^{2} x_{L} = 0, y''_{L} + k_{L}^{2} y_{L} = 0,$$

$$k_{L} = \frac{\omega_{L}}{v_{z}} \cong \frac{qB_{0}}{2p} = \frac{B_{0}}{2BR}$$

Distributions and equilibrium

- A distribution can be in equilibrium under application of linear force
- Separability: $f(\vec{x}, \vec{p}) = Nf_x(x, p_x) f_y(y, p_y) f_z(z, p_z)$ Vlasov equilibrium $\dot{x} \frac{dX}{dx} P + F_x X \frac{dP}{dp_x} = 0$ $f_x(x, p_x) = X(x) P(p_x)$
- Separated equations: $\frac{1}{XF_{s}(x)} \frac{dX}{dx} = -\frac{\gamma_{0} m_{0}}{pP} \frac{dP}{dp_{s}} = \lambda_{s}$
- Momentum solution $P(p_x) = C_p \exp\left(-\frac{p_x^2}{2\gamma_0 m_0 k_B T_0}\right) = C_p \exp\left(-\frac{p_x^2}{2\sigma^2}\right)$
- Solution for linear restoring force in *x*:

$$X(x) = C_x \exp\left(-\frac{\gamma_0 m_0 v_0^2 \kappa_0^2 x^2}{2k_B T_x}\right) = C_x \exp\left(-\frac{x^2}{2\sigma_x^2}\right)$$

Self-forces (space-charge) are nonlinear in x, Maxwell-Vlasov equilibria not Gaussian.

RMS envelope equation

- Want information on extent of distributions
- Look at RMS envelope

$$\sigma_x^2 = \langle x^2 \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^2 f_x(x, x') dx dx',$$

Take derivatives

$$\frac{d\sigma_{x}}{dz} = \frac{d}{dz}\sqrt{\langle x^{2}\rangle} = \frac{1}{2\sigma_{x}}\frac{d}{dz}\langle x^{2}\rangle \qquad \qquad \frac{d^{2}\sigma_{x}}{dz^{2}} = \frac{d}{dz}\frac{\sigma_{xx'}}{\sigma_{x}} = \frac{1}{\sigma_{x}}\frac{d\sigma_{xx'}}{dz} - \frac{\sigma_{xx'}^{2}}{\sigma_{x}^{3}}$$

$$= \frac{1}{2\sigma_{x}}\frac{d}{dz}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}x^{2}f_{x}(x,x')dxdx' \qquad \qquad = \frac{1}{\sigma_{x}}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}xx'f_{x}(x,x')dxdx' = \frac{\sigma_{xx'}}{\sigma_{x}}.$$

$$= \frac{1}{\sigma_{x}}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}xx'f_{x}(x,x')dxdx' = \frac{\sigma_{xx'}}{\sigma_{x}}.$$

$$= \frac{\sigma_{x'}^{2} + \langle xx'' \rangle}{\sigma_{x}} - \frac{\sigma_{xx'}^{2}}{\sigma_{x}^{3}}.$$

$$\frac{d^2\sigma_x}{dz^2} = \frac{d}{dz} \frac{\sigma_{xx'}}{\sigma_x} = \frac{1}{\sigma_x} \frac{d\sigma_{xx'}}{dz} - \frac{\sigma_{xx'}^2}{\sigma_x^3}$$

$$= \frac{1}{\sigma_x} \frac{d}{dz} \int_{-\infty - \infty}^{\infty} \int_{-\infty}^{\infty} xx' f_x(x, x') dx dx' - \frac{\sigma_{xx'}^2}{\sigma_x^3}$$

$$= \frac{\sigma_{x'}^2 + \langle xx'' \rangle}{\sigma_x} - \frac{\sigma_{xx'}^2}{\sigma_x^3}$$

RMS Emittance and the Envelope

• The RMS envelope equation can be put in standard form by noting that the *rms emittance*

$$\varepsilon_{x,\text{rms}}^2 = \langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2$$

is constant under of linear forces $x'' + \kappa_x^2 x = 0$

• Also, with this assumption, $\langle xx'' \rangle = -\kappa_x^2 \langle x^2 \rangle = -\kappa_x^2 \sigma_x^2$ and

$$\sigma_x'' + \kappa_x^2 \sigma_x = \frac{\varepsilon_{x, \text{rms}}^2}{\sigma_x^3}.$$

- The emittance enters the envelope equation as a pressure-like term
- Example solution: equilibrium $\sigma_{eq} = \sqrt{\frac{\varepsilon_{x,rms}}{\kappa_x}}$

Inclusion of Acceleration

- In electron sources we have strong acceleration
- Acceleration introduces "adiabatic" damping

$$\frac{d^2x}{dz^2} = \frac{d}{dz}\frac{p_x}{p_z} = -\kappa_x^2 x + \frac{(\beta\gamma)}{\beta\gamma}x', \quad (\beta\gamma)' = \frac{F_z}{p}$$

This enters into the envelope as

$$\frac{d^2\sigma_x}{dz^2} = \frac{d}{dz}\frac{\sigma_{xx'}}{\sigma_x} = \frac{1}{\sigma_x}\frac{d\sigma_{xx'}}{dz} - \frac{\sigma_{xx'}^2}{\sigma_x^3}$$
$$= \frac{1}{\sigma_x}\left[\sigma_{x'}^2 - \kappa_x^2\sigma_x^2 - \frac{(\beta_0\gamma_0)'}{\beta_0\gamma_0}\sigma_{xx'}\right] - \frac{\sigma_{xx'}^2}{\sigma_x^3}$$

• In standard form $\frac{d^2\sigma_x}{dz^2} + \frac{(\beta\gamma)}{\beta\gamma} \frac{d\sigma_x}{dz} + \kappa_x^2 \sigma_x = \frac{\varepsilon_{n,x}^2}{(\beta\gamma)^2 \sigma_x^3}$ where we have introduced the *normalized* emittance

$$\varepsilon_{n,x} \equiv \beta \gamma \varepsilon_{x,rms}$$

Busch's theorem: magnetization emittance

- If particles are "born" in magnetic field, then they have canonical angular momentum. Upon leaving field, they have rms transverse momentum _{σ_{p⊥}} ≅ ^{qB₀}/₂ σ_{x(y)}
 This can be translated to normalized
- This can be translated to normalized emittance

$$\varepsilon_{n.x} \approx \frac{\sigma_{p\perp}}{m_0 c} \sigma_x \cong \frac{q B_0}{2 m_0 c} \sigma_x^2 \approx 150 B_0(T) \sigma_x^2$$

Reading references

- Review Chapter 1 sections (all) concerning dynamics and phase space
- Review Chapter 2 sections (1,3-6) concerning motion in magnetic fields and linear focusing
- Review Chapter 5 sections (1-3, 5) concerning distributions and envelopes