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Lecture 2
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Electrodynamics

= * Start with Maxwell equations (mks)
- V:-B=0 %-5=pe )
"= Where the fields obey the constitutive felations

—

—_—

—_—
_—
—_—
-

D=¢DE B-= M(H)ﬁ ;

= « Continuity of sources implied V-/,+ 2 c=0

= « Charged particles obey the Lorentz force equation,
| ap = q(E +V X E)

- : . dt.

= With a generalization of the momentum p.

VL gl it
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p=ymyy = fymyc
ith m,being the rest mass (nonrel. limit), and
( _ ~1/2
Yy = \1— (Vz/cz))
* The energy U and momentum are related by
4-vector mvariant length (like space-time)

U = ym062




Relativistic equations of motion

[ Purely magnetic forces yield no change in
energy, as force 1s normal to instantaneous

motion, 477 - ;. dp

. = * Transverse equation of motion has larger
= 1nertial mass

ymo%j= q(?xé)

fi » Longitudinal acceleration with electric
- field gives change 1n y, different scaling of

1nertial ma dv
ertia SS V3m07t”=qu




EM Fields 1n special relativity

:" * Longitudinal fields are “Lorentz invariant”

= « Transverse fields (i.e. self fields in beam)

' = * Inbeam rest frame g -0 and
FJ_ =Q(EJ_ +V XBL) =qEL(1_/J)2) = q}/zl
extra’ factors of inertial mass...

- ¢




f > Hamiltonians in special relativity

" = * A Hamiltonian is a function of coordinates and
“ “canonical momentum” which gives the

equations of motion _  gH _oH
xi =—, pl =
op; &x
| = * Itis constructed from a Lagrangian

. _ oL
H(x,p)=p-x—L Pi=g

l

= * A Hamiltonian can rigorously give equations of
» motion, and constants of the motion, i.e. H,

oH

H-= ﬁ_ H independent of time is constant.
4
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Relativistic dynamics

J » Need potentials(¢..4) for variational analysis

~ -~ A .. -
E=—V¢e—5 B=VxA

" = * The Lorentz force can be written as

=q—§¢e—%-(\7ﬁ);\ =q—§¢e-§

= + Relations between energy/momenta and
potentials can be seen

pc,i=pi+in H=U+q9,




The relativistic Hamiltonian

ﬁ‘@ﬁ@@

L L
x|

* From the 4-vector relation of energy and
momentum,

2

(H-q9.)" = (. - gA) ¢ +(mc’)

or — >
H = \/(ﬁc - qA) cz+(mocz) +q¢.

» Canonical variables simply related to
familiar mechanical variables (U,p)

-
-
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Transtformations of Hamiltonian

Transtform to new canonical variables to
make the Hamiltonian constant?

\ Rkt et Vi Aeise (A Al AL

Example: wave with phase velocity v,

Galilean transformation ¢=z-vt p. =p,

—_—
—

New Hamiltonian H(&.p.)=H(E.p.)-v,p:.

\

Example: traveling wave 1n accelerator...
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Traveling wave Hamiltonian

= * Field and vector potential
0A

Ez(z—v¢t)=—7;= Eosin[kz(z—v¢t)], AZ(Z—V¢I)=—

1D COM Hamiltonian:

k]i)q) cos[kz(z - v¢t)],

- \/(p ol fe- v¢t)]) 4 mec?)
In terms of mechanical momentum for
plotting (“algebraic” Hamiltonian, not for
equations of motion)

FI(C,pC) = \/pgzc2 +(mocz)2 -V, e + qfo Cos[kzg]

%



Phase plane plots

* With algebraic form,
for a given H, choose C,

can determine p.

/’\ Plot motion along

\ Rkt et Vi Aeise (A Al AL

\M/ constant A contours

v Example: longitudinal

e motion in small

Ko “potential” case, typical
of 1on linacs and
circular accelerators
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 Phase space, general considerations

Phase space density
distribution: f(x.p.)

Number of particles near a
phase space point 1Sf(%,5.1)dxd’p

& 0

In beam physics, we often
will have 2D projections of
phase space, i.e. (x,p,)

Motion uncoupled 1n x,y,
and z.

Particle distribution in phase space
projection, approximated by f
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[Liouville theorem

b d S = - =
Vlasov equation VT3V fapV,f
dt ot

For Hamiltonian systems:

ML [ A X
dt ot dt ox, dt dp,

i

\RgeA b \eote Vil Ao At A A

_ a N E oH Jf OJH df
ot op; ox;,  ox; op,

i

e WGE

=@+2(5Haﬂ df oH JH df)=i
at

\

dp, ox; dH  ox, dp, dH ) It

i

If particle number is conserved %= 0

Conservation of phase space density: ‘:l_f _ 0.
4
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Design trajectory and paraxial rays

= Trajectories measured
with respect to 1dealized
design

Small angles assumed,;
paraxial rays

p., << p,=|p|

Equations of motion
parameterized using z as
independent variable
instead of £, dx 1dx i
dz v.dt v

s Vi A A A A
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Example: equations of motion 1n
magnetic quadrupole

| = * Magnetic field (normal)
- B, = B(y% + x9)
= * Magnetic force

—

- F, =qv.z X l§2 =qv_B'(yy - xx)
= « Equation of motion
F —
Vmovg Po

o . Simple harmonic
oscillator form:




Motion 1n uniform magnetic field

Field B=B?

Lorentz force
. _,
dt

dp - 5\ _9gB
ar m B (B ),

Uniform motion in z
Transverse circle at
cyclotron frequency.

dzv d2v _ qBo

X 2 _ y 2 = —
gz OV TS vy =0 T ym,

* Radius related to p,
p,(MeV/c) =299.8 - B,(T)R(m)

Define: BR=p, (MeV/c)/299.8

— Helix in general, angle P, /P




Solenoid focusing

o retarn | Particles pick upp, in
fringe field

Charged particle P
test trajectory ) Coils 07BZ o oB
it ———pB,=- or B,=-_—
gnetic field P &p oz 2 0z p=0

lnes * Integrate, to find

Symmetry
axis

t Z Z

2 2 p 2 aB
Ap¢ = quZdet= qude = _q70f0"_2z

4 3 3 p=0

- ~42[B(2)- B()] = -4 B,

 Result known as Busch’s
theorem

« Assume particles are
“born” 1n region with no
magnetic field...




The Larmor Frame

Note radius of curvature R 1s
1/2 of offset p. Particle passes

0,=0./2 through origin!
A frame defined by particle

and origin rotates with
Larmor frequency

(il postion e In Larmor frame, equations of
particle motion are simple harmonic

trajectory

. 2
X, +w;x, =0 " 2. _

oo 2 k =wL qBO= BO
y,+wry, =0, yZ+kzyL=(), t v, 2p 2BR
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Distributions and equilibrium

A distribution can be 1in equilibrium under
application of /inear force

Separability: /(5P) = Na(wp)£y.p,) fz.p)

crer X, o dP fx.p,) = X(x)P(p,)
Vlasov equilibrium *-P+FX 7=
. 1 dX = yym, dP
Separated equations: xzpya ™" pp @

2

Momentum solution P<px)=c,,exp(_ v )cp( pf)

2y,mok,T, ;

Solution for linear restoring force in x:

2.2_.2 2
YooV oKy X X
X(x)=C exp| ——————|=C_exp| -
( ) ’ P( 2k, T, ) ’ p( 2)

20,

Self-forces (space-charge) are nonlinear 1n Xx,
Maxwell-Viasov equilibria not Gaussian.
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RMS envelope equation

« Want information on extent of distributions
= « Look at RMS envelope

ol = <x2> = j}xzfx(x,x')dxdx',

Take derivatives

VS s Ve e A A A

e WGE

2
d o,

dz’

\

2
do. . 0O,

xx_ XX

1
o - 3
o, dz o,
o0 2

f xf xx dxdx—a—
—00 —00 Ox
+{xx)

o’
o, o’

O,
a
dz

d o
dz
1
Co.d
0




RMS Emittance and the Envelope

| = * The RMS envelope equation can be put in
standard form by noting that the rms emittance

eirms = <x2><x'2> — <xx’>2

~ = is constant under of linear forces x4 x?x= 0

| = * Also, with this assumption, (xx") = =7 <x2> =
. o and £,

X, rms
3 L]
O

X

" 2 _
o, + Kx()'x =

' . * The emittance enters the envelope equation as a
pressure-like term
E

- = * Example solution: equilibrium o, =[5
i K

X




Inclusion of Acceleration

In electron sources we have strong acceleration

Acceleration introduces “adiabatic” damping
dzx_ d p, (/5)’) : ' F
dz>  dz D,

This enters into the envelope as

2 2
do, _do, _1do, o,
3
X GX dZ OX
o

’

2

2.2 (ﬁOYO) !
x’_Kxax_ Gxx' - )O;
x

BoYo o

=K, X+ By x', (By) =;

d’o, ([a’y)l do, ., &,
In standard form "+ p =+ mo = s

where we have introduced the normalized
emittance _
gn,x = ﬁ ygx,rms




Busch’s theorem:
magnetization emittance

.= * If particles are “born” in magnetic field,

J then they have canonical angular
momentum. Upon leaving field, they have
rms transverse momentum o 95,

- x(y)
= « This can be translated to normalized

emittance
O

B
e ~—ttg =420 52 ~150B,(T)o
| 2mc
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Reading references

f « Review Chapter 1 sections (all) concerning
» dynamics and phase space

. * Review Chapter 2 sections (1,3-6)

concerning motion in magnetic fields and
= linear focusing
= * Review Chapter 5 sections (1-3, 5)
concerning distributions and envelopes




