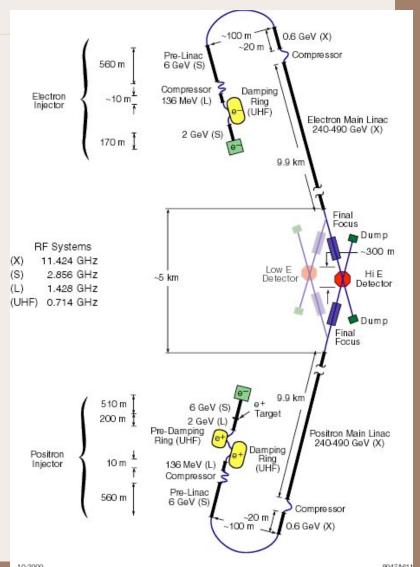
The Physics of Electron Sources

J. B. Rosenzweig

UCLA Dept. of Physics and Astronomy

USPAS Lectures: UW-Madison, June 2004

Applications of Modern Electron Sources


- Advanced applications demand extremely high quality beams
 - High charge (>109 electrons)
 - Short pulse (ps to fs)
 - Very cold: little spread in momentum, transverse angle (low emittance)
- High energy physics
 - Linear colliders
 - Advanced accelerators
- Light sources
 - High gain free-electron lasers
 - Inverse Compton scattering X-ray sources

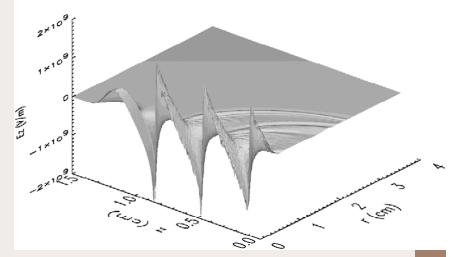
Next generation linear collider

- Electrons and positron collisions at >250 GeV
- How does electron source impact design?
- *Luminosity* requires
 - High repetition rate
 - Bunch trains
 - Large number of electrons per pulse
 - Low emittance

$$\mathbf{L} = \frac{N_{e+} N_{e-} f_c}{4\pi \sigma_x \sigma_y} = \frac{\gamma N_{e+} N_{e-} f_c}{4\pi \sqrt{\beta_x^* \beta_y^*} \cdot \sqrt{\varepsilon_{x,n} \varepsilon_{y,n}}}$$

- Electron (and positron) spin polarization needed
 - Physics reach of machine

NLC electron beam parameters at damping ring entrance

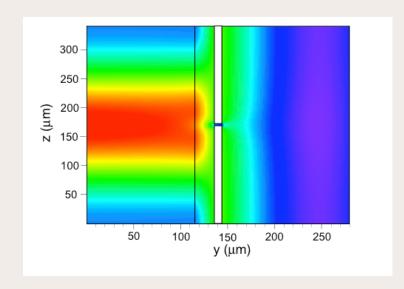

PARAMETER NAME	SYMBOL	VALUE
Bunch Spacing	$ au_s$	1.4 ns
Particles/Bunch	N_{e-}	0.8×10^{10}
Number of Bunches	N_b	190
Repetition Rate	$f_{\it rep}$	120 Hz
Energy	E	1.98 GeV
Bunch Length	$\sigma_{\!_{z}}$	10 mm (max.)
Bunch-to-Bunch Pop. Uniformity		2%
Emittance (norm. rms)	\mathcal{E}_n	100 mm-mrad
Polarization	p_{e-}	80 %

Advanced Accelerators I: Wakefield Accelerators

- Use coherent (generalized
 Cerenkov) to excite waves in media
 - Plasma
 - Dielectric
 - Periodic structures
- Beam excitation must have correct frequency content
 - Multi-bunch (~klystron)
 - Short single bunch $k_z \sigma_z \le 2$
- Cerenkov scaling for very high fields $eE_{z,dec} = e^2 N_b \int \frac{n(k)-1}{n(k)} dk$

$$\Rightarrow e^2 N_b k^2 \cong 4e^2 N_b \sigma_z^{-2}$$

Emittance important at low energies



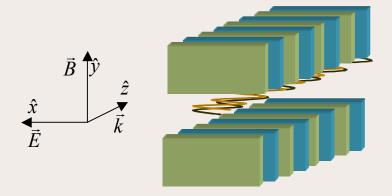
Example: Simulation of \sim GV/m plasma wakefield accelerator longitudinal fields. Beam located near z=1.3 cm, $\sigma_z=0.5$ mm, $\sigma_r=0.7$ mm; $N_b=10^{11}$.

Advanced Accelerators II: Optical Accelerators

- Optical to quasi-optical accelerators under investigation
 - Use lasers or other coherent sources
 - Scale the RF accelerator to μmmm wavelengths
- Very high fields
 - Short time scales
 - Short length scales
- Beams demanding
 - Microbunched injection
 - Small charge/µbunch (pC)
 - Very small emittances

$$\varepsilon_n \le 10^{-8} \text{ m-rad.}$$

Example: Simulation of resonant THz dielectric accelerator, with 250 micron aperture.


Beam-based Light Sources I: The Free-electron Laser

- Electromagnetic field coherently enhanced by undulator radiation
- Resonance condition: electron slips one λ_r for every λ_u

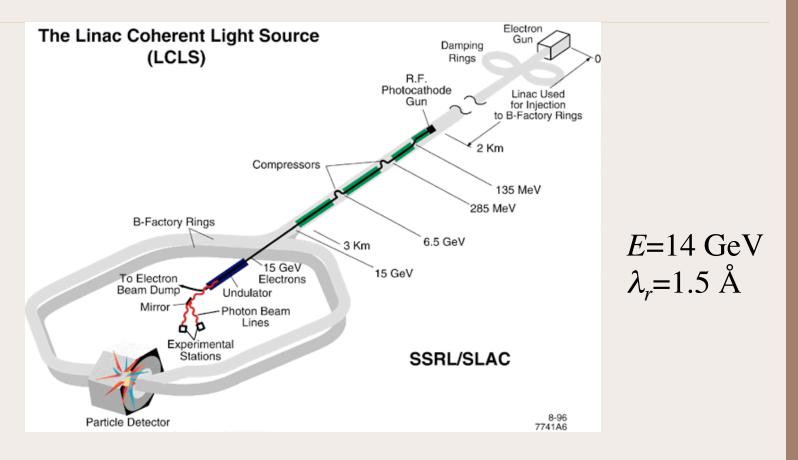
$$\lambda_r = \frac{\lambda_u}{2\gamma^2} \left[1 + a_u^2 \right] \qquad a_u = 2\pi e B_{u,rms} / \lambda_u m_e c^2$$

Coherence: radiation cone (γ^1) angular overlap

$$\varepsilon_n \le \frac{\lambda_r \gamma}{4\pi} = \frac{\lambda_u}{8\pi \gamma} \left[1 + a_u^2 \right]$$

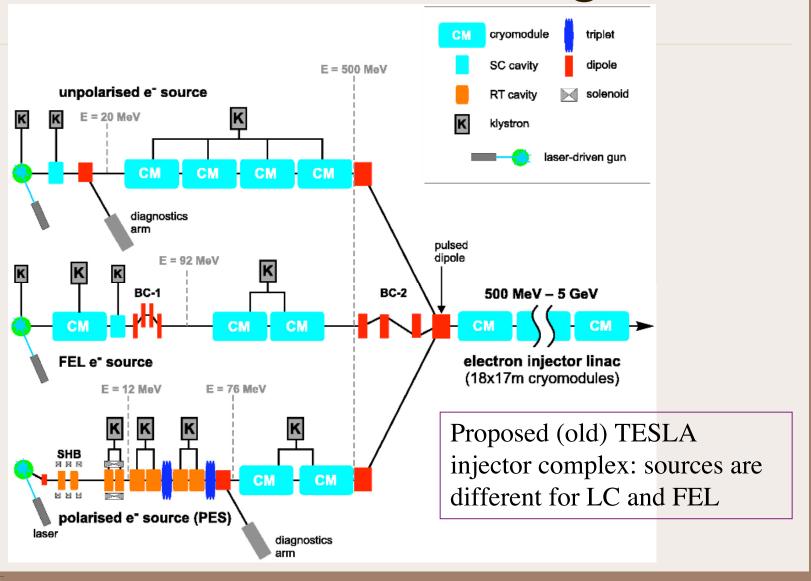
Schematic of undulator with periodicity λ_{w} , interaction of electron beam with radiation field.

Amplification is instability, based on


cold, dense beam. Gain:
$$G \propto \exp(z/L_g)$$

$$L_g = \frac{\lambda_u}{4\pi\sqrt{3}\rho}$$

$$\rho = \left[\frac{a_u}{4k_u}\right]^{2/3} \left(\frac{4\pi e^2 n_b}{\gamma^3}\right)^{1/3} \propto a_u^{2/3} \left(\frac{B_e}{\gamma}\right)^{1/3}$$


$$B_e = \frac{2I}{\varepsilon_{x,n}\varepsilon_{y,n}}$$

X-ray SASE FEL

- Based on SASE (self-amplified, spontaneous emission) instability
- Very high brightness demanded: $\varepsilon_n \le 2 \cdot 10^{-6} \text{ m-rad}, I = 4 \text{ kA}$

HEP and FEL Marriage?

