
1. The derivation is as follows:
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This also explicitly show that 
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transverse (only x dimension) Hamiltonian was used in the example in class is simply
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,   φ x( ) = − Fxdx∫  . This is identical to

the non-relativistic Hamiltonian, with an effective mass of 
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2. (a) Direct differentiation with respect to z  of the square of the rms emittance most
directly yields:

€ 

d
dz
εx,rms

2 =
d
dz

x 2 ′ x 2 − x ′ x 2[ ]
            = 2 x ′ x ′ x 2 + 2 x 2 ′ x ′ ′ x − 2 x ′ x ′ x 2 − 2 x ′ x x ′ ′ x 

            = 2 x 2 ′ x ′ ′ x − 2 x ′ x x ′ ′ x 
Substitution of the functional form 

€ 

Fx ∝ x , or in more standard form,

€ 

′ ′ x =
Fx

γβ 2m0c
2 ≡ −κ0

2x , we have

€ 

d
dz
εx,rms
2 = −2κ0

2 x 2 x ′ x − 2κ0
2 x ′ x x 2 = 0.

(b) Direct differentiation of the square of the normalized emittance yields:
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Again we may use the linear transverse force assumption, 
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3. The change to the relativistic version of the Child-Langmuir law begins with the
relation
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which can be integrated by first multiplying each side of the equation by 
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The second integral of 
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φe  is more complicated, and involves use of a hypergeometric
function. The derivation follows:
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where d is the gap over which the voltage is applied. Solution for 

€ 

Jz  gives the
relativistic Child-Langmuir law.

4. The total amount of charge emitted comes from two contributions to the integral:
the constant value of surface charge density inside the cutoff region, and the
expected charge from the outer region.



The cutoff region extends from the origin to where 

€ 

σ b0 exp −rc
2 /2σ r

2( ) =σ bm , or

€ 

rc =σ r −2ln σ bm /σ b0( ) . The total charge emitted in this region is therefore

€ 

Q1 = πrc
2σ bm = 2πσ r

2σ bm ln σ b0 /σ bm( ) , while the amount of charge emitted in the region

outside of 

€ 

rc  is 

€ 

Q2 = 2πσ b0 ˜ r 
rc

∞

∫ exp −˜ r 2 /2σ r
2( )d˜ r = 2πσ b 0σ r

2 exp −rc
2 /2σ r

2( ) = 2πσ r
2σ bm .

The total charge emitted is 

€ 

Qemitted =Q1 +Q2 = 2πσ r
2σ bm 1+ ln σ b0 /σ bm( )[ ] , and

normalizing to 

€ 

Qexpected = 2πσ r
2σ b0, we have

€ 

Qemitted

Qexpected

=
σ bm

σ b0

1+ ln σ b0

σ bm

 

 
 

 

 
 

 

 
 

 

 
 .

5. With the gradient of 20 MV/m, η=1, 100 A current, and 150 MeV, the invariant
envelope is given by
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 The ratio of the space-charge term to the emittance term in the envelope equation
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2 /2γεn

2ec = 5.4 ×10−2. The beam is emittance dominated, and space-charge
does not play a leading role in the rms spot size evolution.

6. (a) The optimum  RF wavelength to choose to minimize the emittance at one nC
can be found by differentiating the expression of the square of the emittance, with
the charge factors conveniently set to unity:
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Solution of this expression for our values 
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to the S-band design of 10.5 cm), and the normalized emittance is 
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One can see by inspection that this expression has no local minimum, but has an
asymptotic minimum as the charge tends to zero, regardless of RF wavelength.



9. (a) For large numbers of cells, the relative mode separation (normalized to the RF
frequency) may be estimated by
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This needs to be compared to the relative Q-width of the resonances, 
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This width is typical of X-band RF structures.
(b) If we originally have 4 Q-width separation at a given RF frequency, when we scale up
in RF frequency, 
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Q∝ω−1/ 2 . We will be reduced to a 2 Q-width separation at twice the
original RF frequency.

10. The bandwidth of the 266 nm laser light in a 30 fs pulse (assuming Fourier
transform limit), is
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The spread in photon energy at this wavelength is   
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ΔU = hΔω = 0.022 eV. This is a
number typical of how much the nominal photon energy exceeds the work-function.
Thus more (or less) energy is available for the photoelectrons. The quantum
efficiency should thus rise; on the negative side, the “thermal” emittance of the
photocathode should also rise.


