The Neptune Photoinjector

Past Performance | Present Status | Future Plans

Gil Travish

P h a a 0 U

Block Diagram

Rough Timeline

- Beatwaves
 - Velocity Bunching
 - Big Shutdown
 - SBahn

Status During Beatwave Runs

- Single Crystal Cu Cathode
- Linac phase & temp drifts
- Constant gun arcing
- Laser power supply shutdowns
- Low charge

Past Performance

Energy (max)	12 MeV	
Energy Spread (rms)	0.3 %	
Emittance	6 μm (20μm)	with window
Charge (max)	200-300 pC	
Bunch Length	8 - 9 ps green	velocity
Compressed	350 fs 600 fs	bunched
Spot Size @ IP (sigma)	100 µm	chicane

Upgrades Performed 2002 - 2004

- 8 RF
- Gun
- Laser
- Optics
- Diagnostics
- Controls

Upgrades: RF

- Klystron failure lead to replacement
 - 3rd time was the charm
 - Using PEGASUS klsytron

- Waveguide cleaning and RF diagnostic improvements
- Added RF feedback and monitoring
- Improved modulator and HV systems
- Linac temperature control

Upgrades: Gun

- Replaced gun
- Replaced cathode
 - Mg
 - Later, after damage, back to Cu
- Ti:Sub pumping added

Upgrades: Laser

- Added HV power supply to seperate regen + multipass
- Tested new nonlinear crystals
- Built fiber temperature control
- Numerous other less fruitful studies

Upgrades: Optics

- Installed S-Bahn beamline
- Calibrated Compressor Spectrometer

- S-BAHN

 S-BAHN

 S Q2 Q2 S

 B1 Q1 Screen 11 Q1 Screen 12 B2

 BEAM DUMP

 Screen 13,14

 CHICANE

 PBWA
- Installed large quads for improved transport
- Expanded power supply and degaussing controls channel count
- Improved alignment

Upgrades: Diagnostics | Controls...

- Improved camera intensity controls
- More optical diagnostics
- New control computers
- New video system
- 8

Present Status

Energy (max)	15 MeV
Energy Spread (rms)	0.3 %
Emittance	5-6 µm
Charge (max)	600 pC (Mg) / 200 pC (Cu)
Bunch Length (FWHM)	15 ps green
Chicane Compressed (rms)	600 fs
Spot Size @ IP (sigma)	<100 µm diagnostic limited

(lack of) Stability

- Linac and laser phase drifts seem dominated by temperature drifts.
- Laser energy fluctuates ~ 20% with 100% pk-pk not uncommon.
- Laser spot changes
- Limited simultaneous acquisition channels make correlations hard to find.

Sources of Pain

- Large time investment in repairing sub systems
- Drive laser older than some of our students
- Low charge; poor charge stability
- Can't laser clean cathode due to fluctuations
- Aging power supplies high failure rate
- Lack of spares and old equipment means long down times.

Existing Laser Diagram

Proposed Laser Diagram

+ Diagnostics: Single Shot Autocorrelator | Cameras | Pointing Monitors

Future Soft Goals

- Shorten time to data
 - Increase useable beam time
 - Ease learning curve
 - Reduce experiment interruptions
- Improve diagnostics and controls
 - New types of beam interactions
 - Finding correlations
 - Better statistics

Future Steps

- Reliability
 - Tend to deferred maintenance
 - New power supplies
 - Increase spares inventory
 - Continued reliance on PEGASUS as testbed and spares inventory
- Stability
 - New hardware
 - Improved thermal management
 - Find correlations

\$

- New oscillator
 - Diode pumped | grating stretched | high stability (< 1%) | high reliability | better lock-to-clock</p>
- RF
 - Spare KW amp
 - Additional couplers & RF detectors
 - Solid state modulator PS & controls I more interlocks
- Controls
 - Multichannel waveform DAQ system
 - New steering magnet supplies
 - New optical diagnostic intensity control

Neptune RF System

Neptune Drive Laser

