Experimental Physics: Capabilities and Facilities

Gil Travish

a presentation to the DOE: May 2004

From Campus To The World

Neptune | PEGASUS | Support labs SLAC | LLNL | FNAL | BNL | INFN

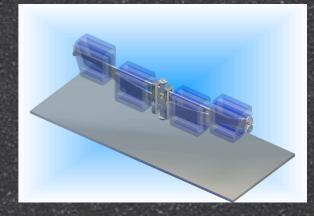
Core Competencies

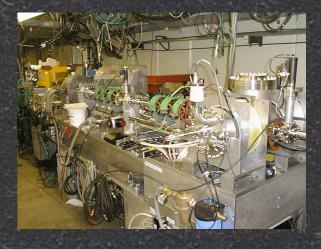
Beam Dynamics and Manipulation

- Beamline optics
- Compression

8

3


- Space Charge
- Emittance Compensation


Beam-Matter Interactions

- Diagnostics
- Transition Radiation: OTR, Near Field TR, CTR

Beam-Radiation Interactions

- Radiation production: FELs, Inverse Compton scattering
- Acceleration: Plasma, IFEL, Dielectric, Wakefield

Key Technologies

PBPL Developed, Designed and Produced

Magnets

- Electromagnets: 2-6 poles; your pick even #'s!
- Permanent: High Gradient, Medium Gradient, Ring Tuned, Undulators

Diagnostics

- e-Beam: screens, slits, spectrometers, TR, CTR bunch length
- Seam: x-ray bent-xtal spectrometer; FEL FROG, GRENOULLE, & imaging spectrometer
- Novel: Deflector, Tunneling, CER

Structures

- Photoinjectors
- PWT linac
- Deflecting cavity

Neptune

Unique Capability

Photoinjector + Mars amplifier

e-Beam

15 MeV | 5 μm | 300 pC | 600 fs γ-Beam

100J | 1 TW | 10µm

Beam-Radiation & AA Experiments | Mature Technologies | Diagnostics

PEGASUS

Unique Capability

2m undulator | RF Testbed | Rapid development lab

e-Beam

16 MeV I "3 μm I 1 nC I 5 ps" γ-Beam

Capable of supporting T³ laser

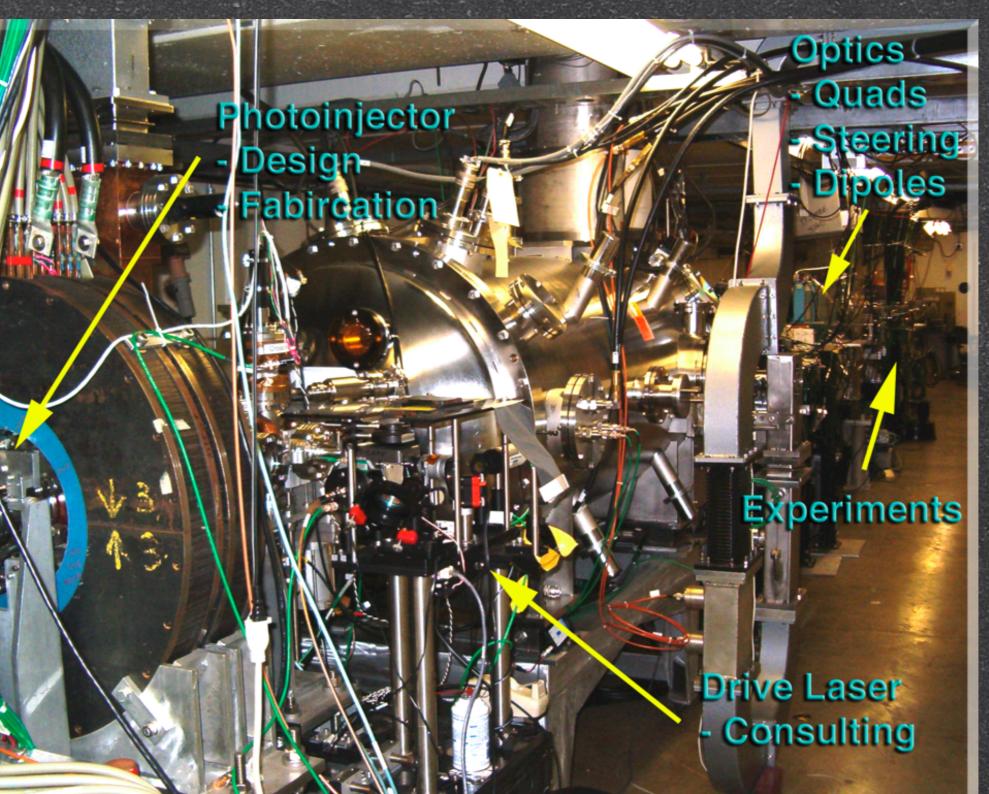
Support and Development for Neptune | Student Training

FNPL (FNAL)

Unique Capability

High Charge Multibunch SC Photoinjector

e-Beam


17 MeV | 20+ µm | 15 nC | 5 ps

Other

Chicane compressor | Undersubscribed beamline | Streakable time scales

Plasma (AA) Experiments | Support Technologies

Example: FNPL

PLEIADES (LLNL)

Unique Capability

100 MeV High Rep Rate & Falcon Laser

e-Beam

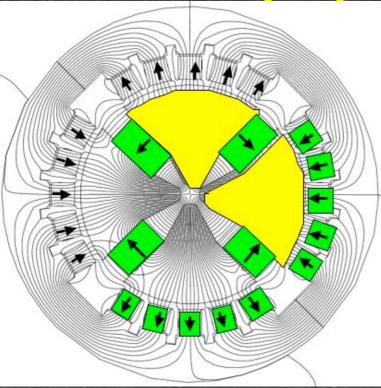
100 MeV | 10 µm | 500 pC | 5 ps γ-Beam

"10J | 100 TW" | 1µm

Thomson Scattering | Beam Manipulation | Beam & X-ray Diagnostics

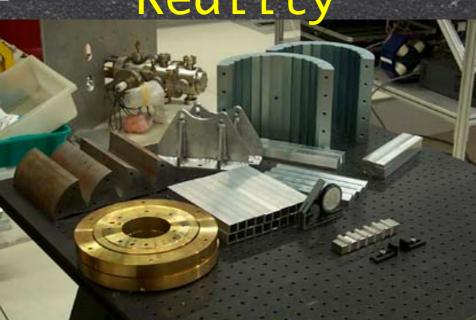
Technology Example: PMQs

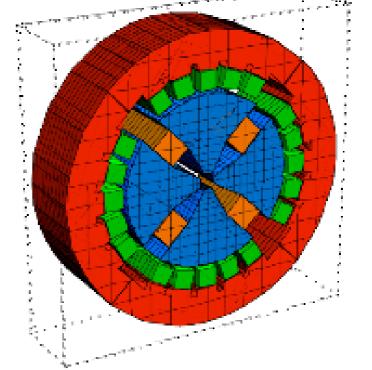
Concept; Design; Simulation; Assembly & Testing by PBPL Installed at LLNL and working well


> 500T/m
5mm ID
z position Focus
FFDDF lattice

Pulsed wire testing

PMQ


Assembly being installed


Ring Tuned PMQ for NLC Maintain c-c alignment to 1µm Radia (3D) Pandira (2D)

0.6 - 0.8 T 0.5% field error ±0.1mm c-c accuracy

Under assembly now.

Additional Facilities

VISA - ATF

Unique Capability

Highest brightness beam | 4m undulator | fully diagnosed | chicane compressor w CER diagnostics

SPARC

Unique Capability

Doesn't exist! | Clean slate | Next level of Engineering for PBPL

Orion

Unique Capability

Exists even less! | Beam manipulation combines best of S-Bahn and compressor | Short bunches

Table of Activities

	Neptune	PEGASUS	PLEIADES	VISA – ATF	FNPL
Adv. Accel	IFEL PBWA Dielectrics				Trapping Plasma Lens PWFA
Beam Dynamics	Dogleg Chicane Velocity		Velocity Bunching	Compressor Chicane	High Charge
Radiation Production	Nonlinear I- Compton THz	FEL Waveguide	Inverse Compton	FEL	
Diagnostics	CTR	Tested many past ideas	CTR X-ray 10µm beam	CTR CER Tomography	Wide range Spectrometer

+ SPARC (INFN) | Orion (SLAC)

Key Beam Parameters

	Neptune	PEGASUS	PLEIADES	VISA – ATF	FNPL
Charge	low	med	med	med	high
Energy	low	low	high	high	low
Emittance	medium	low	medium	low	high
Bunch Length	short	medium	short	short	long

So, what can we really do?

Produce, accelerate, manipulate, diagnose and use high brightness beams.

Gather shot-by-shot and statistical data for comparison with start-toend simulations.

Invent, design, and create key components for beam based experiments worldwide.

The Future

- Tighter integration of simulations and design.
- Digital manufacturing
- Femtosecond lasers & optical diagnostics
- Optical scale structures (nanotech!)

Deficiencies

Medieval laser technology
Machiavellian data acquisition and electronics

Limited on campus space:

Neptune: 4000sq-ft STRB: 1000sq-ft PEGASUS: 4000sq-ft Prep Room: 900sq-ft

Core Capabilities

Theory 3 Simulation Design 8 8 Fabrication Experiment 3 Analysis

PBPL