UCLA Neptune Ramped Bunch Experiment

R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004

- 1. Background & Motivation
- 2. Neptune Dogleg Compressor
- 3. Recent Results
- 4. Future Experiments
- 5. Conclusions

Background Bunch Shaping and Compression

Compression: ps to sub-ps => large beam current Bunch shaping: asymmetric current profile

- Ultrafast Radiation Sources: SASE-FEL
 - compression: high current improved gain
 - shaping: chirped beam time-frequency chirped radiation (VISA II) Thomson Scattering

ELEGANT simulation of chirped beam profile from ATF-VISA II

- Plasma Wake-Field Accelerator (PWFA)
 - compression: high current large wakefields
 - shaping: ramped beam improved transformer ratio

Neptune: beam optics studies ; ORION: future PWFA work

Profile from plasma drive beam study for ORION

Background Ideal PWFA Drive Beam

- Negative R₅₆ provides longitudinal beam compression.
- Compressed beam = stronger plasma wake-fields.
- Ramped beam gives improved transformer ratio (i.e.R >2).
- R = peak accelerating field / peak deccelerating field.
- For ramped bunch, $R = k_p L$

Background

Negative R56 Compression to Get Ramped Beam

- Only works if the z phase space transformation is linear.
- Nonlinearities must be eliminated by use of correcting elements.
- Requires a momentum-chirped (back of crest) initial beam.

Initial beam

Final beam

Neptune Dogleg Compressor S-Bahn Compressor

Neptune Dogleg Compressor S-Bahn Compressor

- S-Bahn is a "dogleg" or dispersionless translating section.
- Half-chicane with focusing elements between the bends.
- Can be operated in a nondispersive mode with symmetric beta function and 2π betatron advance.
- Like a chicane, may be used as a bunch-length compressor.
- Nominal first order temporal dispersion (R_{56} =-5cm) is suitable for beam-shaping.

Neptune Dogleg Compressor Sextupole Design

- Elegant matrix analysis.
- Sextupoles included to 2nd order.
- T₅₆₆ vanishes at sufficient sextupole field strength K₂.
- Other nonlinearities (T₅₆₁, T₅₆₂) are also reduced by about 50%.

Neptune Dogleg Compressor PARMELA Simulation Results: 1000 particles, 300pC

Neptune Dogleg Compressor ELEGANT: Simulated Witness Beam

For PWFA application, drive beam needs a witness beam to accelerate.

Recent Results Transverse Measurements: Beam Size

Measured beam size and simulation agree within 20%.

Recent Results

Transverse Measurements: Nonlinear Dispersion T₁₆₆

Nonlinear Horizontal Dispersion

- Can be manipulated with the sextupoles.
- T166 is correlated with T566.
- Nonlinear emittance growth is dominated by T166.

Changing the fields of all magnetic elements by a fractional amount ζ produces a centroid offset Δx_{cen} .

$$\Delta x_{\rm cen} = -R_{16} \, \zeta + T_{166} \, \zeta$$

Fitting centroid data to a *quadratic* in ζ gives dispersion terms to 2nd order.

$K_2(m^{-2})$	а	$T_{166,\exp}\left(m\right)$	$T_{166,\rm sim}\left(m\right)$
0	0	2.56±0.59	2.54
537	-2.13	0.22±0.77	0.26
995	-1.55	-1.27±0.93	-1.69

Experiment vs. ELEGANT simulation.

Recent Results Longitudinal Measurements

- Martin-Puplett CTR Interferometer
- Bunch length measurement by autocorrelation.
- Sub-picosecond resolution obtainable.

 $\frac{\delta p}{p_0}$

Comparison of Data with Simulation

ELEGANT Simulation

Future Experiments Overview

To develop this scheme for use as a PWFA drive beam, we need:

- Asymmetric bunch, with a ramped profile
- Large beam density (600 pC, 70µm spot size)

For which we require appropriate hardware and diagnostics:

Future Experiments Deflecting Mode Cavity

Half-cavity (4.5 cells) from HFSS.

- X-Band, 9-cell design.
- Collaboration with INFL Frascatti.
- Will be built at UCLA;
- Diffusion bonded at SLAC.
- Powered by 50 kW X-Band klystron
- Frequency: 9.3296 GHz

Lowest dipole mode is TM₁₁₀ Zero electric field on-axis (in pillbox approx.) Deflection is purely magnetic Polarization selection requires asymmetry

$$x_{B} = \frac{\pi f_{RF} L L_{B} \sqrt{2P_{RF} R_{\perp}}}{cE / e}$$

J.D. Fuerst, et. al., DESY Report CDR98, 1998

Photo of cold-test prototype.

Future Experiments PMQ Final Focus

- Hybrid Permanent Magnet and Iron
- Green cubes are Alnico; M=1.175 T

• Field gradient: B'=110 T/m; B''=-0.002 T/m²

- Bore diameter: 8mm
- Benefits: cheaper, better field profile
- Downsides: small bore; in-vacuum

ELEGANT Simulation

 $\sigma_{x,f}$ = 67 μ m ; $\sigma_{y,f}$ = 75 μ m

Conclusions

Dogleg Compression and Beam Shaping:

- 1. Application to PWFA Drive Beam Studies
- 2. Neptune and ORION

3. Use of sextupoles for T_{566} correction: linearize compression Initial experimental results show:

1. Horizontal dispersion measurement: successful use of sextupoles

2. CTR interferometry: sub-ps beam (RMS) and longitudinal manipulation Long-term experiments:

1. PMQ Final Focus: generate $\sigma_r < 70 \mu m$ compressed beam ($n_b > 10^{13} \text{ cm}^{-3}$);

2. Deflecting Cavity: longitudinal profile measurement