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Plasma electron fluid motion and wave breaking near a density transition
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Recently, Suk, Barov, and Rosenzw¢Rhys. Rev. Lett86, 1011(2001)] proposed a scheme for trapping
background electrons in a plasma wake field using a sudden downward transition in the background ion
density, where the density transition length is small compared to the plasma skin depth. In the present paper we
present a fluid dynamical description of this mechanism that is self-consistent up to the point of wave breaking.
A one-dimensional nonlinear relativistic second-order differential equation is derived for the electron fluid
velocity in Lagrangian coordinates. Numerical integrations of this equation are used to map out the regions of
parameter space in which wave breaking occurs and to determine the extent of the downstream region of
plasma involved in wave breaking. Comparisons with one-dimensional particle-iRt€}lsimulations show
that the onset of trapping occurs at the parameter values where wave breaking begins in the fluid analysis, but
that the downstream extent of plasma involved in wave breaking is not a reliable predictor of the number of
trapped particles. The PIC simulations also reveal that particles initially located on the upstream side of the
density transition may become trapped, although these particles do not participate in wave breaking in the fluid

description.
DOI: 10.1103/PhysReVvE.66.016501 PACS nunt®er29.17+w, 29.27-a, 52.40.Mj, 52.75.Di
[. INTRODUCTION where plasma electrons must end up trapped in a relativistic
wave.
In a recent work by Suk, Barov, and RosenzwElg a The analysis in Ref[1] was based on one- and two-

scheme was proposed for trapping of background plasm@imensional(2D, with cylindrical symmetry simulations,

electrons in a plasma wave driven by an ultrarelativistic elec@nd 1D theoretical work. The theoretical model developed in
tron beam(plasma wake-field accelerator, or PWFising a this work concentrated on following the single electron mo-
sharp downward plasma density transition. This effect allowdion in regions I and II, using wave fields derived by assum-

for the synchronized injection of ultrashort pulses into a spalnd that the wave motion is obtained from the uniform den-

tially compact accelerating wave, and it has significant simSity response in each respective region. This analysis has the

plifying advantages over previously proposed plasma injeC5’;1dvantag_e of iIIumin_ating the tr_ansition of pl_asma electrqns
tion schemes involving multiple lasef@—5]. As a robust from oscillatory to directed motion, trapped in the potential

. L . of the ultrarelativistic wave on the downstredimcreasingz)
and straightforward method of injecting the appropriate num- Ee of the density transition. It is, however, a model that

. s
ber of electrons into the small phase space acceptance fbes not deal self-consistently with the plasma fluid motion,
ch is assumed to be regular on either side of the transi-

plasma waves, this scheme has attracted the attention of tlU\?hi

advanced accelerator community. tion, with a discontinuity in the description of the fluid vari-

~ The physical scenario involved in this injection is summa-gp|es at the transition. The purpose of the present paper is to
rized in Fig. 1. Suk, Barov, and Rosenzweig in a one-aqopt the opposite emphasis, to study the fluid motion in this
dimensional(1D, in 2) analysis, have demonstrated that in- scheme up until wave-breaking. Our analysis illuminates the

jection based on a density transition is caused by the phagfasma fluid motion, at the expense of accurately following
mixing of plasma electrons as they are driven backwards

from the lower densityll) to higher density(l) plasma re-
gion, and subsequently return to region Il. As the particles

are advanced in phase upon reentry into region II, they are ORg;ﬁsz& ilgcrggll(lml’ Relativistic electron beam
injected into a more favorable region in phase space for trap- y .—

ping into the plasma wave. In order to observe this effect, it :
was found that the characteristic length over which the den-
sity transition occurs must be smaller than the plasma skin
depthk;1= vy/wy, where the beam velocity is indicated by
v, and the plasma frequency is given by, Region I Region IT
= J4mnye?/m,. Physically, this requirement arises because
the amplitude of the moderately relativistic oscillatory elec- z

tron motion in a large-amplitude relativistic plasma wave is  Fig. 1. Trajectory of a plasma electrésolid curve which be-

of the approximate magnitude kf *. It should be noted that gins at a point in region Il and is negatively accelerated into the
since advanced accelerator applications inherently involv@igher-density region | by the passage of the beam. Upon returning

only relativistic waves, that the plasma electron motion musto region Il, the electron has been rephased and is trapped by the
be moderately relativistic in the scenario of present interestwave generated in the wake of the beam.

Trapped plasma electrons in region II

A
i)

Initial backwards plaisma
electon motion in region IT
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the motion after wave breaking, when fluid models are no V-B=0,
longer strictly valid.

The scheme proposed in R¢L] assumes that the initial wheren,, n, andn, are the ion, electron, and beam densities,
excitation occurs entirely within the first half of a plasma g=wv/c and 8,=v,/c are the normalized plasma electron
oscillation, and therefore requires a driving beam shorteand beam velocities, aqm= ym.cg is the relativistic plasma
than the plasma skin depth. The amplitude of the resultinglectron momentum. If the waves are restricted to one spatial
excitation is determined by the density profile of the beamdimension(that is, E, 8, andn contain onlyz andt depen-
Instead of assuming a particular functional form for the lon-dence, the plasma is unmagnetize®+0), and the time
gitudinal profile, and thereby complicating the analysis, wedependence is assumed to obeywhse ansattcombinedz
simply impose as a boundary condition the transient introandt dependences are of the forg= wpt—kp2z), then the
duction of an electric field at a position traveling with light derivatives transform according to
speed inz, and then examine the plasma fluid motion in the
wake of this excitation. In the example of the PWFA, this d d d d
corresponds to an ultrarelativistic beam of negligible length, E_’“’p@v Eﬁ_kp@- 2
in which case the electric field after passage of the beam is
kpor>1, whereoy, is the surface charge density of the 1D Equations(1) can then be brought into the form of an ordi-
bunched electron beam. In the case where the driver is afary differential equation for the normalized longitudinal ve-

intense |asef|aser wake-field accelerator, LWFPG. similar |oc|ty B and a Separate aigebraic expressionrtor
analysis could be employed, but with the initial transient

force acting in the opposite direction. This scenario awaits d2 1- 8,8 B n

future investigation. — > =,8t2,i +=2, (3)
The present analysis is additionally concerned with the do® J1-5 Bo=B  No

dynamical state of the fluid electrons, so we adopt a La-

grangian description of the plasma motion, as opposed to _ NoPBy

previous works which have emphasized wave properties, and n= Bo—B" (4)

thus employed an Eulerian approach. With this Lagrangian

analysis, we examine the dynamics of wave breaking andhese are the usual equations for one-dimensional plasma
deduce where and when the wave breaking is initiated. Wevaves, originally obtained by Akhiezer and Polovin in 1956
also examine the conditions that lead to wave breaking, exX6]. The electric field may be obtained frogby way of the
amining in particular the combinations of initi&l, and rela-  electron fluid equation of motion, which can be cast into the
tive density parameter=(ng,—ng )/nNg, which produce form

wave breaking. The results of the Eulerian analysis up until

this point are exact and self-contained, but must be extended eE 1 d 1-B,8
with additional tools in order to examine two topics. The first ——= : )
P mcw, By de 1-p52

is the extent of the initial region of plasma which is involved
in wave breaking, which may be estimated from our analysis. -
The second is the degree to which the wave breaking in the, For a beam of n_egI!glbIe _Iength_ ar_1d surfacg charge den-
present scenario actually corresponds to trapping of the af'ly b, the electric field discontinuity _expenenced by a
fected plasma electrons. Both of these questions will be ag2/aSma electron as the beam passes by is, as stated above, of

proached by comparison of the analytical theory with 1pMadnitude 4ray,. Since the beam density, is zero in the
simulations. wake of the beam, and the plasma electrons are assumed to

be at rest prior to the passage of the beam, (Bgmay be
solved in homogeneous form subject to the initial conditions
Il. REVIEW OF EULERIAN ANALYSIS B=0 and E=—4mxo, evaluated at the beam positiap

We begin the anaiysis by reviewing the equa’[ions govern_: 0, Wthh is St-ationary in thlS Galilean frame. Qnder these
ing plasma fluid motion in Eulerian coordinates. Maxwell's conditions, oscillatory solutions fg8 may be obtained ana-
equations and the fluid electron equation of motion read  ytically from Eq. (3) in terms of elliptic integrals. The non-

linear solutions are periodic functions whose amplitydgis
ap related to the maximum electric field,, by the simple ex-
E+c(ﬂ~V)~p= —e(E+BX%xB), pression 6],

1/2

ek, 1

V-E=4me(ng—n—ny), _

©6)

mew, | \1-p2
1B N . : .
VXE=— P (1)  Wave breaking in a plasma of uniform ion density occurs

when the wave amplitude becomes sulfficiently large that the
1 peak fluid velocity8,, exceeds the wave phase spegggl

_ Lok The electric field amplitude at wave breaking is therefore
VXB=—a4me(nBtnoBo) t ¢ 5 obtained from Eq(6) by setting8,= By -
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For the case of a plasma with a sudden decrease in the No
value of the ion density, Suk, Barov, and Rosenzweig treat fi=———, 9
the plasma responses in the regions of different ion density
as being independently governed by E8) subject to the ~ ~
same initial conditions, but with different values fog. e_E__i B (10
Since the electric field in either region is static in the Gal- mc  or \/E
ilean frame moving with the wave, the interface between B

regions | and I, which in the frame of the wave travels in theAS in the Eulerian analysis, if the effect of the beam is rep-

negativez direction with speedy,, is described as a discon- . o g

. o o0 resented by a transient excitation of the electric field, then

tinuous joining of two Hamiltonian phase spaces. The dy—E (8) may be solved in a homogeneous form,£0)

namics of trapping are then modeled by performing a Hamil- d. y o 109 DA
ubject to appropriate initial conditions. If we permit spatial

tonian analysis on the single-particle motion of a trappedS

electron. But since the fluid variables in this treatment aredependence iny, the homogeneous form of E(B) reads

discontinuous at the interface, a model of the trapping

) ~
mechanism is obtained at the expense of a self-consistent d_ B o) (11)
description of the fluid dynamics. — p :
p y dr? Je2— B2
Ill. LAGRANGIAN ANALYSIS A fluid element executes relativistic oscillations subject to

In order to formulate a self-consistent fluid dynamical de_t_he\:/4|oc—al\2/71£e or:‘ .the plasma freq.uencfyuﬁ(gzl id
scription of a 1D cold plasma wave in the presence of a TmO(g_)e Me at the instantaneous position 0_ the flul
discontinuity in the ion density, we must derive from (.~ €/ément. Sinces=a&/d7, Eq.(11) represents a third-order
a set of expressions for the evolution of the fluid variablegdifferential equation in the functiog. o
that are valid whem, has arbitrary spatial dependence. In Fransformed var|able§, 'the initial conditions corre-
Sincen, then depends onbut not ont, thewave ansatfEq. sponding to a~beam of neg~I|g|bIe length and surface charge
(2)] must be abandoned. In Eulerian coordinates, the result igensityo, areE=—4may,, B=0, and{=z, to be applied
a second-order partial differential equation with mixed  at time r=z,/v,, when the beam encounters the fluid ele-
derivatives. Transforming to Lagrangian coordinates affordgnent located at point,. By virtue of Eq.(10), the first of
us the following advantages: the transformed fluid velocity isthese boundary conditions is equivalent to specifying the in-
governed by an ordinary differential equation rather than degrated acceleration of the fluid element after it encounters
partial differential equation; we can examine the motion ofthe beam. For the case of an instantaneous density transition,
individual fluid elements; and we obtain a mathematical testo,zj is a step function having the valu€,,=4we2n0,,/me in
for wave breaking. the upstream region and the valaué,,:47re2n0,,,/me in the

We defineé(zy,7) to be the position of a fluid element a downstream region. The plasma oscillations are therefore
time 7 after it was found to be located at poimg. The characterized by a sudden change in wavelength at the inter-
Lagrangian coordinate transformation is then implementedace. In this situation, a fluid element initially located just
by making the substitutiong— &(zq,7), t—7. Since the inside region Il spends much of its oscillation in region |
functional dependences of the fluid variables are altered bigefore returning to its initial positiog, advanced in phase
the coordinate change, we denote the transformed functionglative to the nominaluniform plasma region 1l oscilla-
by adding a tilde: B(z,t)—B(zo,7), n(z,t)—Ti(zy,7), tion. This rephasing of the plasma electrons is the mecha-
E(z,t)—E(zo,7). The function&(zy,7) represents the tra- nism for trapping found by the Hamiltonian analysis of Suk,

jectory of an individual fluid element, so the convective de-Barov. and Rosenzweig. . .
rivative satisfies the transformation rule Numerical integration of Eq(11) provides solutions for

&(zp,7), from which the other fluid variables may be ob-
tained using Eq99) and(10). Upon reverting back to Eule-
£+Clgi_>i_ 7) rian coordinates, we find that the functiog(z,t) and
ot Jz It E(z,t) produced by the fluid analysis are continuous across
the density interface, and are initially single-valued every-
By combining thet andz derivatives in Eqs(1) into convec- where. However, less than one plasma oscillation after the
tive derivatives, we can utilize the substitution above to ob-driving beam crosses the density transition, the rephasing
tain an ordinary differential equation G, mechanism mentioned above causes the trajectories of the
rephased fluid elements to begin intersecting, leading to mul-
tivalued fluid variables and a breaking of the plasma wave.
d? B 4me? . . 5 In the region where charge sheets have crosgéiz,<0.
dr2 \/1 ~5 - m (Bo= BN+ BoMp). (8 This mathematical condition may be equated with wave
-8 breaking by noting that, for negativi&/ 9z, Eq.(9) implies
a nonphysical value for the electron density.
For comparison with Eqg4) and (5), the fluid density and Figure 2 illustrates the evolution of the plasma electron
electric field in Lagrangian coordinates are given by momentum and density under the present fluid analysis for
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FIG. 2. Normalized plots of density and momentum at three successive times leading to wave bfeakihgme t=0, the driving
beam is located at the interface<0) and the momentum and electron density have the characteristic prdfileat time t=0.6
X2mlwy, asharp density spike form&) At t=0.747< 2/ w,, | wave breaking occurs, the density spike becomes infinitely high, and the
momentum acquires infinite slope near the peak.

the initial conditionseE;,/mcw,;=0.6, B=1, and f, solution for the functiorg¢ is determined by the values of the

—nNo)/No,=0.225. The quantitieg/3 and n/n, are shown System parameters, there exists a mappingi®— % which

as functions of at three successive times leading up to wavetakes the trio of real-valued parameteEsy( 3y, 7) into the

breaking, beginning @t=0 when the driving beam is located Vvalue (7¢/Jzo) mir- The cutoff condition may then be written

at the density interface. After 0.6 of a region | plasma oscil-

lation has elapsed, a sharp density spike has formed. After (‘7_5) =F (7,84 ,Ey)=0 (12)

0.747 of a region | plasma oscillation, wave breaking begins, azo) o Pyl

the density spike becomes infinitely high, and the fluid mo-

mentum acquires an infinite slope near the peak. A physicallfEquation(12) describes a surface that separates the trapping

important clarification obtained from this analysis is thatand nontrapping regions in a three-dimensional space of the

wave breaking in the Lagrangian fluid model begins in re-parametersg,,,8y,7). Figure 3 shows contours of this sur-

gion I. This is to be contrasted with the Hamiltonian analysisface in the plane oE,, and 5, for several values of3.

of Ref.[1], in which the trapping occurs in region Il follow- Individual points along these contours were obtained by nu-

ing a rephasing in region . merically integrating Eq(11), extrapolating the minimum

value of the derivative’é/ dz,, and manipulatinds,,, and »

S0 as to bring this minimal value withitn0.001 tolerance of

zero. In the limit of small amplitude waveg,,— 0, and the
Solutions for¢ are sensitive to the physical parameters ofcutoff curves approach a common interceptyat 0.5, indi-

Eg. (11) and its boundary conditions, nameB,,, 8,, and cating that wave breaking always occuis some degreaf

the relative change in ion density=(ng,—ng )/Ng,. The

IV. MAPPING THE PARAMETER SPACE

conditiondé/ dzo=<0 provides a simple mathematical test for 10
wave breaking, which may be used to determifi®: the _ — i
values of the parameters that are conducive to wave break- 04 - ;_ o
ing, and (2) the downstream extent of wave breaking. To 06 b Trapping Region .. ;;0‘50_
these ends, we construct two different graphical representa- " . ﬁ"_w
tions of the wave-breaking behavior of the system: a map of 0.4 PN M.
cutoff contours(Fig. 3) and a map of contours of maximum
z, (Fig. 4). 027
00 - : : :
A. Map of cutoff contours 000 025 050 075 100 125 150 175

- . . . . eEy/meawy
The conditiondé/9z,<0 implies that wave breaking will

not occur if the minimum value of the derivativig/ 9z, is FIG. 3. Contours of §&/dzy) mn=0 for different values of8,
positive. The “cutoff” for wave breaking may therefore be (1.00, 0.75, 0.5, and 0.25Wave breaking occurs in the upper right
characterized by the equality§/9z,) ,i,=0, where the de- region of the curve corresponding to the given valugsgf In the
rivative is minimized with respect to botty and 7. Since the  limit of small amplitudes, the cutoff occurs gt=0.5.
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10 upstream plasma skin depkly ;. The problem of finding the
08 Y X values of the parameterg(,, ) corresponding to a particu-
) lar 2 is resolved by noting that the cun@ mentioned pre-
06 1 viously is the set of pointszy,r) along whichdé/dz,=0,
M ‘ and that the pointsz,,7) and @,,7) are the intersections of
047 C with the curve defined by?¢/drdzo=0. Consequently,
we can determine the valdg for a set of parameter values
02 ¢ corresponding to a point in the trapping region of Fig. 4 by
integrating Eq(11), and then adjusting the valueB {, ) so

025 050 075 100 125 150 175 as to bring the minimal value ofé/dz,, plotted as a func-
eEm/meoy tion of 7 at constanty=2,, to within a+0.001 tolerance of
zero. The resulting contours of constagtshown in Fig. 4
FIG. 4. Contours of constarzy are shown as thin solid curves  gre found to lie above the heavy cutoff contour transposed
labeled by the corresponding integer valuekgfz,. Intermediate  ¢om Fig. 3 and to intersect the vertical axis st 1.

curves corresponding to half-integer valuekgfz, are dashed and The value ofz, labeling the contour that passes through a
unlabeled. These contours lie above the cutbéfavy solid curve given point E,,,7) in the trapping region of parameter
The contour forzo=0 is superimposed on the figure as a heavys ace denoteg ’ the downstream extent of initial wave-
dashed curve. T.he point in parameter space correAsponding 0 trE)éraeaking particles for those values of the parameters. How-
?ijhs of Fig. 5 is marked by a dot that fies on kqZo=1 con ever, it is the difference between the maximal and minimal
valuesAzy=2,—Z, which represents the length of the down-

the ion density decreases by a factor of more than one hafiiféam inteérval of plasma that participates in wave breaking,
between regions | and II. The intercepts along the horizontaf"d therefore it is this quantity that measures the number of
axis, representing the values Bf, at which wave breaking Wave-breaking particles, given By=X\o,Azy, wherehg,
occurs in a plasma of uniform ion density, are in agreementS the linear electron density in the downstream region prior
with the values predicted by settingy,= 3 in Eq. (6). The to the passage of the beam. In terms of our dimensionless
values ofz, which minimize the derivative in Eq12) are parameters, we may express the fractional quantity

found to lie approximately in the region betwekp,z,=0

(at small amplitudesand k, ~0.5 (at large amplitudes f=(1-n)kp Az, (14)
Consequently, for points in parameter space which lie suffi-

ciently close to the cutoff contour, a small downstream reyhich represents the ratio of the numbéof wave-breaking
gion of initial particles, beginning az,=0, are excluded particles to the initial number of particles in the upstream
from the wave breaking. We will return to this point below. region per plasma skin depft=Nk, /X, .
Repeating for various values &§ the procedure outlined
B. Map of contours of constantz, above for plotting the curves in Fig. 4, would produce a

Consider thavé/az, is a function of the variableg, and ~ S€cond map, one of contours of constant minimymThe
7. For points in parameter space inside the trapping regiorfo=0 curve from this hypothetical map has been superim-
there exists a regioR in the first quadrant of the,-r plane ~ PoSed upon th&, contours in Fig. 4, where it appears as a
on which the conditio?&/az,<0 is satisfied(since wave heavy dashed line. This curve, which actually represents the
breaking occurs after the beam crosses the boundary arf@ner €dge of &,=0 plateau, does not coincide with the
only particles initially located downstream participate in N€avy cutoff contour transposed from Fig. 3, but rather tumns
wave breaking Let C be the closed curve bounding the Out into the_ trapping region, d|V|d_|ng it into two_subreg|ons.
regionR, and let ¢,,7),(%,7) e C denote the points where for points in pararpeter space lying in the region above the
2, takes its maximum and minimum valugs, and¥,, re- 20=0 Curve,Az,=2,, and Eq.(14) can be writtenf = (1
spectively, along the curve. —MKpiZo. _

Physically,2, represents the downstream extent of the ini- FOr POINts lying in the region between the cutoff curve
tial region of plasma which becomes involved in wave@nd thez,=0 curve,z, takes various values between zero
breaking. Its value varies according to the choice of param@nd approximately one half of a plasma skin depth. This
eter values. LeG denote the mappings: %2—R which region of nonzero values far, is of particular interest, be-
takes the pair of real-valued parametes, ( 7) into the cor- ~ Cause it implies that a small interval of initial particles near
responding value of,. We eliminate the parametg, by the boundary is excluded from the wave breaking. The dot

restricting ourselves to the ultrarelativistic lim#,=1. The ©N theky2o=1 contour in Fig. 4 marks a point in this re-
resulting equation, gion. Figure 5 shows the evolution of wave breaking for the

choice of parameters corresponding to this point, including a

20=G(En,7), (13 shaded area highlighting the expanding interval of initial par-
ticles involved in wave breaking. The lack of shading in the
defines a surface in the three-dimensional sp&sg, §7,2)- region extending from zero tk, ;2,=0.1003 illustrates the

Figure 4 shows contours of this surface in the plan&gf  predicted initial interval of excluded particles. These may be
and », for several values df,, which are normalized to the interpreted as particles that are so close to the interface that
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___2r Y S FIG. 6. Superimposed plots of electric field and normalized mo-
g': g g': b ] mentum, for the parameter valugs-0.4,eE,/mcw,,=0.5, show
¢ 0'0 \\ K3 0'0 good agreement between the fluid mog@silid curve$ and the PIC
0z _0'2 3 ] 9 _0'2 b ] simulation(dot9 at the onset of wave breaking.
04 ) ) ) ) ) e -04 ) ) ) ) | )
00 02 04 ko'f%"'s 10 12 02 04 k‘)'fzo"-s 10 12 sus wave-breaking particles, a series of PIC simulations was
1 Ps

conducted in which the initial upstream plasma density and

FIG. 5. Plots ofd¢/dz, at four different times for a choice of field amplitude were fixed at the valuesy,=5.833
parameters(n=0.225, eE,/mcw, ;=0.6) which lie inside the X 10" cm™2 and eE,/mcw,,;=0.5, while the downstream
wave-breaking region sho¢e) wave breaking beginning at a point density was manipulated to produce different valuespof
just downstream of the discontinuityp) an interval of plasma The number of macroparticles trapped due to the wave
(shaded regionbecoming involved in wave breaking aid trav-  preaking produced by the first peak of the plasma wave was
eling downstream unti(d) atky, ;zo=1 the wave breaking ends.  extracted from the computed phase space coordinates, and

the ratiof of trapped particles to the initial number of up-

their sojourn in region Il prior to crossing the interface is too stream particles per plasma skin depth was calculated. These
brief for them to be rephased sufficiently to become involvedresults were then compared with a sampling of the parameter
in the wave breaking. space of Fig. 3 along a vertical path located at
eEy/mcw, =0.5. Figure 8 shows the number of wave-
breaking particles predicted by the fluid mod#iangles
alongside the number of trapped particles extracted from the

The Lagrangian fluid model described above provides th&!C simulations(squares for various values ofy. Since
following predictions about the wave-breaking behavior of athese plots show good agreement on the valug, efhere
plasma wave crossing a density transition. wave breaking and trapping begin, #gesholdfor trapping

(1) Wave breaking occurs for values of the parameliegs 1S clearly identified. Asy increasedi.e., the density transi-
and » which lie in the shaded region of Fig. 3, and specifi- fion becomes more pronoundetioth the number of wave-
cally for >0.5. breaking particles from the fluid analysis and the number of

(2) For choices of parameters lying in the region of trap-trapped particles from the PIC simulations increase initially
ping space bounded by tiig=0 contour and the trapping and then asymptote to some constant value. I-!owever, the
cutoff curve in Fig. 4, a small downstream region of initial Number of trapped particles rises to only approximately one

V. PARTICLE-IN-CELL SIMULATIONS

particles does not participate in wave breaking. half of the number of particles which participate in wave
(3) The fractional number of wave-breaking particles is breaking. This discrepancy illustrates an important clarifica-
given by Eq.(14). tion provided by the PIC simulations: the initial region of

In order to determine to what extent these statementBlasma which becomes trapped spaogh sides of the den-
about wave breaking are relevant to trapping behavior, a se-
ries of one-dimensional particle-in-ce(PIC) simulations 150 ¢ . . .

was performed. The simulation results were found to be in 100 Trapped Particles E
good agreement with the Lagrangian fluid model up to the ; ]
point of wave breaking. Wave breaking is found in both S0 .t E
cases to be initiated on the upstreémgher density side of VB 00 3t e e ]
the interface. The agreement between the PIC and fluid _505_ ]
model is illustrated in Fig. 6, which shows snapshots of the I ]
longitudinal electric field and the plasma phase space at the -100 F E
onset of wave breaking. Figure 7 shows the longitudinal PIC ST Y} S A T S I I
phase space of the plasma after trapping has occurred. A =50 00 50 Z(llgl-g) 150 200 250

rectangular box has been drawn to highlight the trapped par-

ticles trailing the first peak in fluid velocity. Their separation  FiG. 7. A phase space plot from a 1D PIC simulation 64 ps after
in momentum from the rest of the fluid demonstrates thehe beam has crossed the density transition with the parameter val-
acceleration mechanism provided by the field gradients imes 7=0.375 andeE,/mcw,,=0.5 illustrates the trapping of

the plasma wave. background plasma particle€ontained inside the boxby the
For the purpose of comparing the numbers of trapped verplasma wave.
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SARRRRRRARDEREE LA which does not self-consistently take into account the effects
10 :—w . of the beam magnetic field on the plasma electron motion,
o | Afluid Model E may not serve as a guide. Recent work by Barov, Rosenz-
Nbpr (of ] weig, and Thompsof7] has in fact extended the results of
dor Ok linear theory in the case of a disk-shaped beam with a
04 : o-function distribution inz. In this analysis it was found that,
02 E 3 even for beams of very large charge where the plasma re-
F hm s sponse is nonlinear, the longitudinal electric field immedi-
00 01 02 03 04 05 06 07 ately behind the beam identical to that predicted by linear

7 theory. In addition, the combination of plasma electron trans-
o . verse motion due to the beam’s radial electric field and redi-
FIG. 8. These plots, at an electric field amplitude of rection of the motion by the beam’s azimuthal magnetic field
eEn/mcwy, =0.5, illustrate the discrepancy between the numbers, oy ces a strong longitudinal momentum kick forward. This
of wave-breaking particles from the fluid modgliangles versus kick, similar to the ponderomotive kick forward due to an
trapped particles from the 1D PIC simulatiofsgjuarel but show o ohort aser pulse, as in the LWFA case mentioned above
good agreement in the value giwhere trapping begins and similar is not uniform, but h,as a radial dependence that limits its,

asymptotic behaviors at largg The vertical axis is the number of ! S . \

: i I effect to a region within a plasma skin depth of the beam’s
particles expressed as a fraction of the number of initial upstream dial ed C tv. in th fab £l but
particles per plasma skin depth. radial edge. Consequently, in the case of a beam of large bu

finite radius and zero length, the excitation experienced by
sity transition. By contrast, the fluid analysis predicts thatplasma electrons lying along the path of the beam and well

only particles on the downstreafower density side of the \t/)wthll(n thde_bearlns raddlus EOSS';:S Iprlm_?rgy Olf ? tt[a_ns;_e?(;
interface participate in wave breaking. In the fluid analysis, ackward impulse produced by the longitudinal €lectric fie

the asymptotic behavior in Fig. 8 arises from a cancellin emnd the bgam. R . dTh find that th
effect between the increasing region of plasma involved in OWEVET, Barov, ROSenzweig, an ompson hind that the

wave breaking and a decrease in the downstream density R edictions of the linear 2D analysis deviate from the results

o o ; : : . 2D particle-in-cell simulations for a beam of finite length
is incr while in the PIC trapping simulations it i 0 . .
7S increased, € in the PIC trapping simulations it is due(kp(rz=1.1) as the beam charge is permitted to greatly ex-

to a falloff in the number of new upstream particles success d the ch £ ol lect . bic skin depth
fully injected into the plasma wave with each increase in thél:'i(ies ingi(fatgggeth%t ptﬁzmzoir?gsmg? I\r/1al? d%/l Iff)rs ;n or?g '

value of . . . Lo .
7 imensional approximation in the case of a wide beam of

Thus the comparison of the fluid and PIC analyses clearl I but lenath dditionall wricted b
shows that while wave breaking is a necessary condition fopiall but nonzero fength are additionally restricted by an
pper limit on the beam density. A qualitative assessment of

trapping, the fluid analysis does not successfully predic - ;
which particles are trapped after the wave-breaking conditio he flnd_lngs qf Ref.[?] suggests that in OTO.'er for the one-
imensional limit to apply under the conditions of E@5),

is satisfied. In hindsight this is not surprising because th he beam density should not greatly exceed the ambient den-

fluid treatment loses its rigorous validity after wave break- itV of the ol Y hensi derstandi
ing, and there is therefore no reason to expect that a pararﬁly ofthe plasma. Flowever, a comprenensive understanding

eter such as the trapped population would be calculated coP-f the extent to W.h'Ch wave b_reakmg of the sort descrlped
rectly. Nevertheless, the Lagrangian fluid analysis haémder the S'”_‘p"fY'”g assumptions of our 1D. modgl contrib-
allowed a critical step forward in that we may predict exactlymes to trapping in a fully nonlinear three-dimensional sys-

; : . tem must await additional efforts in the form of higher-
the threshold in parameter space where trapping begins. dimensional(2D and 3D particle-in-cell simulations, and

extensions to the 2D theory. In this respect, the present dis-

VI. CONDITIONS FOR APPLICABILITY OF THE cussions are intended as a prelude to more extensive future

A note should be made regarding the assumptions of the
preceding analysis and the restrictions which these assump- VII. CONCLUSIONS
tions impose upon the physical system. In particular, our
invocation of the one-dimensional limit and our treatment of We have, in the above analysis, employed a fully relativ-
the beam as & function in z require that the transverse and istic Lagrangian fluid model to examine the phenomenon of
longitudinal dimensionsr, and o, be large and small, re- wave breaking due to a density transition in a 1D plasma

spectively, compared to a plasma skin depth, or wave of relativistic phase velocity. This analysis has pro-
duced some exact results that have clarified the wave-
Koo, <1, kpo>1. (15  breaking process, allowing us to identify which Lagrangian

fluid elements engage in wave breaking, where this wave
The requiremenk,o,>1 arises from the need to avoid a breaking occurs, and most importantly, which combinations
large transverse electric field in the plasma, with its concomiof plasma and wave parameters produce wave breaking. The
tant transverse plasma electron motion. This criterion is depresent analysis stands in contrast to the Eulerian picture
veloped straightforwardly with the bounds of validity of lin- previously developed in Refl]. This contrasting view is
ear theory. However, for cases of interest, linear theoryrelated to the shift of viewpoint from the Hamiltonian analy-
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sis of electron motion in an approximate assumed potentiainterval of initial fluid elements which participate in the
where one is concerned witrapping which must be distin- wave-breaking process is found to be a poor predictor of the
guished from the concept afave breakingor the break- number of trapped particle§ig. 8. The PIC simulations
down of the fluid assumption. also reveal that particles on the upstream side of the density
As neither the Eulerian-Hamiltonian analysis of Réf,  transition may become trapped in the plasma wave. A more
nor the present Lagrangian model can answer in detail thgetailed study of the mechanism by which these particles

question of how wave breaking and trapping are connectethecome trapped will be the subject of a future paper.
one-dimensional particle-in-cell simulations were performed

to provide a basis for comparison. These numerical studies
indicate that the fluid model provides a good description of a
1D plasma wave up to the point of wave breaking, and that it
correctly predicts the parameter values where trapping is ini- The authors would like to thank H. Suk, M. Thompson, E.

tiated. The PIC simulations indicate that the results of theEsarey, and S. Cowley for helpful discussions. This work
fluid analysis cannot, however, be reliably extended past thevas supported by the U.S. Department of Energy under
onset of wave breaking. In particular, the magnitude of theGrant No. DE-FG03-92ER40693.
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