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Plasma electron fluid motion and wave breaking near a density transition
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Recently, Suk, Barov, and Rosenzweig@Phys. Rev. Lett.86, 1011~2001!# proposed a scheme for trapping
background electrons in a plasma wake field using a sudden downward transition in the background ion
density, where the density transition length is small compared to the plasma skin depth. In the present paper we
present a fluid dynamical description of this mechanism that is self-consistent up to the point of wave breaking.
A one-dimensional nonlinear relativistic second-order differential equation is derived for the electron fluid
velocity in Lagrangian coordinates. Numerical integrations of this equation are used to map out the regions of
parameter space in which wave breaking occurs and to determine the extent of the downstream region of
plasma involved in wave breaking. Comparisons with one-dimensional particle-in-cell~PIC! simulations show
that the onset of trapping occurs at the parameter values where wave breaking begins in the fluid analysis, but
that the downstream extent of plasma involved in wave breaking is not a reliable predictor of the number of
trapped particles. The PIC simulations also reveal that particles initially located on the upstream side of the
density transition may become trapped, although these particles do not participate in wave breaking in the fluid
description.

DOI: 10.1103/PhysRevE.66.016501 PACS number~s!: 29.17.1w, 29.27.2a, 52.40.Mj, 52.75.Di
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I. INTRODUCTION

In a recent work by Suk, Barov, and Rosenzweig@1#, a
scheme was proposed for trapping of background pla
electrons in a plasma wave driven by an ultrarelativistic el
tron beam~plasma wake-field accelerator, or PWFA! using a
sharp downward plasma density transition. This effect allo
for the synchronized injection of ultrashort pulses into a s
tially compact accelerating wave, and it has significant s
plifying advantages over previously proposed plasma in
tion schemes involving multiple lasers@2–5#. As a robust
and straightforward method of injecting the appropriate nu
ber of electrons into the small phase space acceptanc
plasma waves, this scheme has attracted the attention o
advanced accelerator community.

The physical scenario involved in this injection is summ
rized in Fig. 1. Suk, Barov, and Rosenzweig in a on
dimensional~1D, in z! analysis, have demonstrated that i
jection based on a density transition is caused by the ph
mixing of plasma electrons as they are driven backwa
from the lower density~II ! to higher density~I! plasma re-
gion, and subsequently return to region II. As the partic
are advanced in phase upon reentry into region II, they
injected into a more favorable region in phase space for t
ping into the plasma wave. In order to observe this effec
was found that the characteristic length over which the d
sity transition occurs must be smaller than the plasma s
depthkp

215nb /vp , where the beam velocity is indicated b
nb and the plasma frequency is given byvp

5A4pn0e2/me. Physically, this requirement arises becau
the amplitude of the moderately relativistic oscillatory ele
tron motion in a large-amplitude relativistic plasma wave
of the approximate magnitude ofkp

21. It should be noted tha
since advanced accelerator applications inherently invo
only relativistic waves, that the plasma electron motion m
be moderately relativistic in the scenario of present inter
1063-651X/2002/66~1!/016501~8!/$20.00 66 0165
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where plasma electrons must end up trapped in a relativ
wave.

The analysis in Ref.@1# was based on one- and two
dimensional~2D, with cylindrical symmetry! simulations,
and 1D theoretical work. The theoretical model developed
this work concentrated on following the single electron m
tion in regions I and II, using wave fields derived by assu
ing that the wave motion is obtained from the uniform de
sity response in each respective region. This analysis has
advantage of illuminating the transition of plasma electro
from oscillatory to directed motion, trapped in the potent
of the ultrarelativistic wave on the downstream~increasingz!
side of the density transition. It is, however, a model th
does not deal self-consistently with the plasma fluid moti
which is assumed to be regular on either side of the tra
tion, with a discontinuity in the description of the fluid var
ables at the transition. The purpose of the present paper
adopt the opposite emphasis, to study the fluid motion in
scheme up until wave-breaking. Our analysis illuminates
plasma fluid motion, at the expense of accurately followi

FIG. 1. Trajectory of a plasma electron~solid curve! which be-
gins at a point in region II and is negatively accelerated into
higher-density region I by the passage of the beam. Upon retur
to region II, the electron has been rephased and is trapped by
wave generated in the wake of the beam.
©2002 The American Physical Society01-1
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the motion after wave breaking, when fluid models are
longer strictly valid.

The scheme proposed in Ref.@1# assumes that the initia
excitation occurs entirely within the first half of a plasm
oscillation, and therefore requires a driving beam sho
than the plasma skin depth. The amplitude of the resul
excitation is determined by the density profile of the bea
Instead of assuming a particular functional form for the lo
gitudinal profile, and thereby complicating the analysis,
simply impose as a boundary condition the transient in
duction of an electric field at a position traveling with lig
speed inz, and then examine the plasma fluid motion in t
wake of this excitation. In the example of the PWFA, th
corresponds to an ultrarelativistic beam of negligible leng
in which case the electric field after passage of the beam
kps r@1, wheresb is the surface charge density of the 1
bunched electron beam. In the case where the driver is
intense laser~laser wake-field accelerator, LWFA!, a similar
analysis could be employed, but with the initial transie
force acting in the opposite direction. This scenario awa
future investigation.

The present analysis is additionally concerned with
dynamical state of the fluid electrons, so we adopt a
grangian description of the plasma motion, as opposed
previous works which have emphasized wave properties,
thus employed an Eulerian approach. With this Lagrang
analysis, we examine the dynamics of wave breaking
deduce where and when the wave breaking is initiated.
also examine the conditions that lead to wave breaking,
amining in particular the combinations of initialEz and rela-
tive density parameterh5(n0,I2n0,II)/n0,I which produce
wave breaking. The results of the Eulerian analysis up u
this point are exact and self-contained, but must be exten
with additional tools in order to examine two topics. The fi
is the extent of the initial region of plasma which is involve
in wave breaking, which may be estimated from our analy
The second is the degree to which the wave breaking in
present scenario actually corresponds to trapping of the
fected plasma electrons. Both of these questions will be
proached by comparison of the analytical theory with
simulations.

II. REVIEW OF EULERIAN ANALYSIS

We begin the analysis by reviewing the equations gove
ing plasma fluid motion in Eulerian coordinates. Maxwel
equations and the fluid electron equation of motion read

]p

]t
1c~b•“ !•p52e~E1b3B!,

“•E54pe~n02n2nb!,

“3E52
1

c

]B

]t
, ~1!

“3B524pe~nb1nbbb!1
1

c

]E

]t
,
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wheren0 , n, andnb are the ion, electron, and beam densitie
b5n/c and bb5nb /c are the normalized plasma electro
and beam velocities, andp5gmecb is the relativistic plasma
electron momentum. If the waves are restricted to one spa
dimension~that is,E, b, andn contain onlyz and t depen-
dence!, the plasma is unmagnetized (B50), and the time
dependence is assumed to obey thewave ansatz~combinedz
and t dependences are of the formf5vpt2kpz!, then the
derivatives transform according to

]

]t
→vp

d

df
,

]

]z
→2kp

d

df
. ~2!

Equations~1! can then be brought into the form of an ord
nary differential equation for the normalized longitudinal v
locity b and a separate algebraic expression forn,

d2

df2

12bbb

A12b2
5bb

2F b

bb2b
1

nb

n0
G , ~3!

n5
n0bb

bb2b
. ~4!

These are the usual equations for one-dimensional pla
waves, originally obtained by Akhiezer and Polovin in 19
@6#. The electric field may be obtained fromb by way of the
electron fluid equation of motion, which can be cast into t
form

eE

mcvp
5

1

bb

d

df

12bbb

A12b2
. ~5!

For a beam of negligible length and surface charge d
sity sb , the electric field discontinuity experienced by
plasma electron as the beam passes by is, as stated abo
magnitude 4psb . Since the beam densitynb is zero in the
wake of the beam, and the plasma electrons are assum
be at rest prior to the passage of the beam, Eq.~3! may be
solved in homogeneous form subject to the initial conditio
b50 and E524psb evaluated at the beam positionf
50, which is stationary in this Galilean frame. Under the
conditions, oscillatory solutions forb may be obtained ana
lytically from Eq. ~3! in terms of elliptic integrals. The non
linear solutions are periodic functions whose amplitudebm is
related to the maximum electric fieldEm by the simple ex-
pression@6#,

eEm

mcvp
5F 1

A12bm
2

21G 1/2

. ~6!

Wave breaking in a plasma of uniform ion density occu
when the wave amplitude becomes sufficiently large that
peak fluid velocitybm exceeds the wave phase speedbb .
The electric field amplitude at wave breaking is therefo
obtained from Eq.~6! by settingbm5bb .
1-2
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For the case of a plasma with a sudden decrease in
value of the ion density, Suk, Barov, and Rosenzweig tr
the plasma responses in the regions of different ion den
as being independently governed by Eq.~3! subject to the
same initial conditions, but with different values forn0 .
Since the electric field in either region is static in the G
ilean frame moving with the wave, the interface betwe
regions I and II, which in the frame of the wave travels in t
negativez direction with speednb , is described as a discon
tinuous joining of two Hamiltonian phase spaces. The
namics of trapping are then modeled by performing a Ham
tonian analysis on the single-particle motion of a trapp
electron. But since the fluid variables in this treatment
discontinuous at the interface, a model of the trapp
mechanism is obtained at the expense of a self-consis
description of the fluid dynamics.

III. LAGRANGIAN ANALYSIS

In order to formulate a self-consistent fluid dynamical d
scription of a 1D cold plasma wave in the presence o
discontinuity in the ion density, we must derive from Eqs.~1!
a set of expressions for the evolution of the fluid variab
that are valid whenn0 has arbitrary spatial dependenc
Sincen0 then depends onz but not ont, thewave ansatz@Eq.
~2!# must be abandoned. In Eulerian coordinates, the resu
a second-order partial differential equation forb with mixed
derivatives. Transforming to Lagrangian coordinates affo
us the following advantages: the transformed fluid velocity
governed by an ordinary differential equation rather tha
partial differential equation; we can examine the motion
individual fluid elements; and we obtain a mathematical t
for wave breaking.

We definej(z0 ,t) to be the position of a fluid element
time t after it was found to be located at pointz0 . The
Lagrangian coordinate transformation is then implemen
by making the substitutionsz→j(z0 ,t), t→t. Since the
functional dependences of the fluid variables are altered
the coordinate change, we denote the transformed funct
by adding a tilde: b(z,t)→b̃(z0 ,t), n(z,t)→ñ(z0 ,t),
E(z,t)→Ẽ(z0 ,t). The functionj(z0 ,t) represents the tra
jectory of an individual fluid element, so the convective d
rivative satisfies the transformation rule

]

]t
1cb

]

]z
→ ]

]t
. ~7!

By combining thet andz derivatives in Eqs.~1! into convec-
tive derivatives, we can utilize the substitution above to o
tain an ordinary differential equation forb̃,

d2

dt2
2

b̃

A12b̃2
52

4pe2

m
~ b̃ñ02b̃ñb1bbñb!. ~8!

For comparison with Eqs.~4! and ~5!, the fluid density and
electric field in Lagrangian coordinates are given by
01650
he
at
ty

-
n

-
l-
d
e
g
nt

-
a

s
.

is

s
s
a
f
t

d

y
ns

-

-

ñ5
n0

]j/]z0
, ~9!

eẼ

mc
52

]

]t

b̃

A12b̃2
. ~10!

As in the Eulerian analysis, if the effect of the beam is re
resented by a transient excitation of the electric field, th
Eq. ~8! may be solved in a homogeneous form (nb50),
subject to appropriate initial conditions. If we permit spat
dependence inn0 , the homogeneous form of Eq.~8! reads

d2

dt2

b̃

Ac22b̃2
52vp

2~j!b̃. ~11!

A fluid element executes relativistic oscillations subject
the local value of the plasma frequencyvp(j)
5A4pn0(j)e2/me at the instantaneous position of the flu
element. Sincecb̃5]j/]t, Eq. ~11! represents a third-orde
differential equation in the functionj.

In transformed variables, the initial conditions corr
sponding to a beam of negligible length and surface cha
densitysb are Ẽ524psb , b̃50, andj5z0 to be applied
at time t5z0 /nb , when the beam encounters the fluid e
ment located at pointz0 . By virtue of Eq.~10!, the first of
these boundary conditions is equivalent to specifying the
tegrated acceleration of the fluid element after it encoun
the beam. For the case of an instantaneous density trans
vp

2 is a step function having the valuevp,I
2 54pe2n0,I /me in

the upstream region and the valuevp,II
2 54pe2n0,II /me in the

downstream region. The plasma oscillations are there
characterized by a sudden change in wavelength at the in
face. In this situation, a fluid element initially located ju
inside region II spends much of its oscillation in region
before returning to its initial positionz0 advanced in phase
relative to the nominal~uniform plasma! region II oscilla-
tion. This rephasing of the plasma electrons is the mec
nism for trapping found by the Hamiltonian analysis of Su
Barov, and Rosenzweig.

Numerical integration of Eq.~11! provides solutions for
j(z0 ,t), from which the other fluid variables may be ob
tained using Eqs.~9! and~10!. Upon reverting back to Eule
rian coordinates, we find that the functionsb(z,t) and
E(z,t) produced by the fluid analysis are continuous acr
the density interface, and are initially single-valued eve
where. However, less than one plasma oscillation after
driving beam crosses the density transition, the rephas
mechanism mentioned above causes the trajectories o
rephased fluid elements to begin intersecting, leading to m
tivalued fluid variables and a breaking of the plasma wa
In the region where charge sheets have crossed,]j/]z0<0.
This mathematical condition may be equated with wa
breaking by noting that, for negative]j/]z0 , Eq. ~9! implies
a nonphysical value for the electron density.

Figure 2 illustrates the evolution of the plasma electr
momentum and density under the present fluid analysis
1-3
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FIG. 2. Normalized plots of density and momentum at three successive times leading to wave breaking.~a! At time t50, the driving
beam is located at the interface (z50) and the momentum and electron density have the characteristic profiles.~b! At time t50.6
32p/vp,I , a sharp density spike forms.~c! At t50.74732p/vp,I wave breaking occurs, the density spike becomes infinitely high, and
momentum acquires infinite slope near the peak.
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the initial conditionseEm /mcvp,I50.6, bb51, and (n0,I
2n0,II)/n0,I50.225. The quantitiesgb and n/n0 are shown
as functions ofz at three successive times leading up to wa
breaking, beginning att50 when the driving beam is locate
at the density interface. After 0.6 of a region I plasma os
lation has elapsed, a sharp density spike has formed. A
0.747 of a region I plasma oscillation, wave breaking beg
the density spike becomes infinitely high, and the fluid m
mentum acquires an infinite slope near the peak. A physic
important clarification obtained from this analysis is th
wave breaking in the Lagrangian fluid model begins in
gion I. This is to be contrasted with the Hamiltonian analy
of Ref. @1#, in which the trapping occurs in region II follow
ing a rephasing in region I.

IV. MAPPING THE PARAMETER SPACE

Solutions forj are sensitive to the physical parameters
Eq. ~11! and its boundary conditions, namely,Em , bb , and
the relative change in ion densityh5(n0,I2n0,II)/n0,I . The
condition]j/]z0<0 provides a simple mathematical test f
wave breaking, which may be used to determine:~1! the
values of the parameters that are conducive to wave br
ing, and ~2! the downstream extent of wave breaking.
these ends, we construct two different graphical represe
tions of the wave-breaking behavior of the system: a map
cutoff contours~Fig. 3! and a map of contours of maximum
z0 ~Fig. 4!.

A. Map of cutoff contours

The condition]j/]z0<0 implies that wave breaking wil
not occur if the minimum value of the derivative]j/]z0 is
positive. The ‘‘cutoff’’ for wave breaking may therefore b
characterized by the equality (]j/]z0)min50, where the de-
rivative is minimized with respect to bothz0 andt. Since the
01650
e

-
er
s,
-
ly
t
-
s

f

k-

ta-
f

solution for the functionj is determined by the values of th
system parameters, there exists a mappingF: R3→R which
takes the trio of real-valued parameters (Em ,bb ,h) into the
value (]j/]z0)min . The cutoff condition may then be writte

S ]j

]z0
D

min

5F~h,bb ,Em!50. ~12!

Equation~12! describes a surface that separates the trapp
and nontrapping regions in a three-dimensional space of
parameters (Em ,bb ,h). Figure 3 shows contours of this su
face in the plane ofEm and h, for several values ofbb .
Individual points along these contours were obtained by
merically integrating Eq.~11!, extrapolating the minimum
value of the derivative]j/]z0 , and manipulatingEm andh
so as to bring this minimal value within60.001 tolerance of
zero. In the limit of small amplitude waves,Em→0, and the
cutoff curves approach a common intercept ath50.5, indi-
cating that wave breaking always occurs~to some degree! if

FIG. 3. Contours of (]j/]z0)min50 for different values ofbb

~1.00, 0.75, 0.5, and 0.25!. Wave breaking occurs in the upper righ
region of the curve corresponding to the given value ofbb . In the
limit of small amplitudes, the cutoff occurs ath50.5.
1-4
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PLASMA ELECTRON FLUID MOTION AND WAVE . . . PHYSICAL REVIEW E 66, 016501 ~2002!
the ion density decreases by a factor of more than one
between regions I and II. The intercepts along the horizo
axis, representing the values ofEm at which wave breaking
occurs in a plasma of uniform ion density, are in agreem
with the values predicted by settingbm5bb in Eq. ~6!. The
values ofz0 which minimize the derivative in Eq.~12! are
found to lie approximately in the region betweenkp,Iz050
~at small amplitudes! and kp,I'0.5 ~at large amplitudes!.
Consequently, for points in parameter space which lie su
ciently close to the cutoff contour, a small downstream
gion of initial particles, beginning atz050, are excluded
from the wave breaking. We will return to this point below

B. Map of contours of constantz0

Consider that]j/]z0 is a function of the variablesz0 and
t. For points in parameter space inside the trapping reg
there exists a regionR in the first quadrant of thez0-t plane
on which the condition]j/]z0<0 is satisfied~since wave
breaking occurs after the beam crosses the boundary
only particles initially located downstream participate
wave breaking!. Let C be the closed curve bounding th
regionR, and let (ẑ0 ,t̂),(z̆0 ,t̆)PC denote the points wher
z0 takes its maximum and minimum values,ẑ0 and z̆0 , re-
spectively, along the curveC.

Physically,ẑ0 represents the downstream extent of the i
tial region of plasma which becomes involved in wa
breaking. Its value varies according to the choice of para
eter values. LetG denote the mappingG: R2→R which
takes the pair of real-valued parameters (Em ,h) into the cor-
responding value ofẑ0 . We eliminate the parameterbb by
restricting ourselves to the ultrarelativistic limitbb51. The
resulting equation,

ẑ05G~Em ,h!, ~13!

defines a surface in the three-dimensional space (Em ,h,ẑ0).
Figure 4 shows contours of this surface in the plane ofEm
andh, for several values ofẑ0 , which are normalized to the

FIG. 4. Contours of constantẑ0 are shown as thin solid curve
labeled by the corresponding integer values ofkp,Iẑ0 . Intermediate
curves corresponding to half-integer values ofkp,Iẑ0 are dashed and
unlabeled. These contours lie above the cutoff~heavy solid curve!.
The contour forz̆050 is superimposed on the figure as a hea
dashed curve. The point in parameter space corresponding to
graphs of Fig. 5 is marked by a dot that lies on thekp,Iẑ051 con-
tour.
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upstream plasma skin depthkp,I
21. The problem of finding the

values of the parameters (Em ,h) corresponding to a particu
lar ẑ0 is resolved by noting that the curveC mentioned pre-
viously is the set of points (z0 ,t) along which]j/]z050,
and that the points (ẑ0 ,t̂) and (z̆0 ,t̆) are the intersections o
C with the curve defined by]2j/]t]z050. Consequently,
we can determine the valueẑ0 for a set of parameter value
corresponding to a point in the trapping region of Fig. 4
integrating Eq.~11!, and then adjusting the values (Em ,h) so
as to bring the minimal value of]j/]z0 , plotted as a func-
tion of t at constantz05 ẑ0 , to within a60.001 tolerance of
zero. The resulting contours of constantẑ0 shown in Fig. 4
are found to lie above the heavy cutoff contour transpo
from Fig. 3 and to intersect the vertical axis ath51.

The value ofẑ0 labeling the contour that passes through
given point (Em ,h) in the trapping region of paramete
space denotes the downstream extent of initial wa
breaking particles for those values of the parameters. H
ever, it is the difference between the maximal and minim
valuesDz0[ ẑ02 z̆0 which represents the length of the dow
stream interval of plasma that participates in wave break
and therefore it is this quantity that measures the numbe
wave-breaking particles, given byN5l0,IIDz0 , wherel0,II
is the linear electron density in the downstream region p
to the passage of the beam. In terms of our dimension
parameters, we may express the fractional quantity

f 5~12h!kp,IDz0 , ~14!

which represents the ratio of the numberN of wave-breaking
particles to the initial number of particles in the upstrea
region per plasma skin depthf [Nkp,I /l0,I .

Repeating for various values ofz̆0 the procedure outlined
above for plotting the curves in Fig. 4, would produce
second map, one of contours of constant minimumz0 . The
z̆050 curve from this hypothetical map has been super
posed upon theẑ0 contours in Fig. 4, where it appears as
heavy dashed line. This curve, which actually represents
inner edge of az̆050 plateau, does not coincide with th
heavy cutoff contour transposed from Fig. 3, but rather tu
out into the trapping region, dividing it into two subregion
For points in parameter space lying in the region above
z̆050 curve,Dz0[ ẑ0 , and Eq.~14! can be writtenf 5(1
2h)kp,Iẑ0 .

For points lying in the region between the cutoff cur
and thez̆050 curve, z̆0 takes various values between ze
and approximately one half of a plasma skin depth. T
region of nonzero values forz̆0 is of particular interest, be-
cause it implies that a small interval of initial particles ne
the boundary is excluded from the wave breaking. The
on thekp,Iẑ051 contour in Fig. 4 marks a point in this re
gion. Figure 5 shows the evolution of wave breaking for t
choice of parameters corresponding to this point, includin
shaded area highlighting the expanding interval of initial p
ticles involved in wave breaking. The lack of shading in t
region extending from zero tokp,Iz̆050.1003 illustrates the
predicted initial interval of excluded particles. These may
interpreted as particles that are so close to the interface

the
1-5
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their sojourn in region II prior to crossing the interface is t
brief for them to be rephased sufficiently to become involv
in the wave breaking.

V. PARTICLE-IN-CELL SIMULATIONS

The Lagrangian fluid model described above provides
following predictions about the wave-breaking behavior o
plasma wave crossing a density transition.

~1! Wave breaking occurs for values of the parametersEm
andh which lie in the shaded region of Fig. 3, and spec
cally for h.0.5.

~2! For choices of parameters lying in the region of tra
ping space bounded by thez̆050 contour and the trapping
cutoff curve in Fig. 4, a small downstream region of initi
particles does not participate in wave breaking.

~3! The fractional number of wave-breaking particles
given by Eq.~14!.

In order to determine to what extent these stateme
about wave breaking are relevant to trapping behavior, a
ries of one-dimensional particle-in-cell~PIC! simulations
was performed. The simulation results were found to be
good agreement with the Lagrangian fluid model up to
point of wave breaking. Wave breaking is found in bo
cases to be initiated on the upstream~higher density! side of
the interface. The agreement between the PIC and fl
model is illustrated in Fig. 6, which shows snapshots of
longitudinal electric field and the plasma phase space at
onset of wave breaking. Figure 7 shows the longitudinal P
phase space of the plasma after trapping has occurre
rectangular box has been drawn to highlight the trapped
ticles trailing the first peak in fluid velocity. Their separatio
in momentum from the rest of the fluid demonstrates
acceleration mechanism provided by the field gradients
the plasma wave.

For the purpose of comparing the numbers of trapped

FIG. 5. Plots of]j/]z0 at four different times for a choice o
parameters~h50.225, eEm /mcvp,I50.6! which lie inside the
wave-breaking region show~a! wave breaking beginning at a poin
just downstream of the discontinuity,~b! an interval of plasma
~shaded region! becoming involved in wave breaking and~c! trav-
eling downstream until~d! at kp,Iz051 the wave breaking ends.
01650
d

e

-

ts
e-

n
e

id
e
he
C

A
r-

e
in

r-

sus wave-breaking particles, a series of PIC simulations
conducted in which the initial upstream plasma density a
field amplitude were fixed at the valuesn0,I55.833
31013 cm23 and eEm /mcvp,I50.5, while the downstream
density was manipulated to produce different values ofh.
The number of macroparticles trapped due to the w
breaking produced by the first peak of the plasma wave
extracted from the computed phase space coordinates,
the ratio f of trapped particles to the initial number of up
stream particles per plasma skin depth was calculated. T
results were then compared with a sampling of the param
space of Fig. 3 along a vertical path located
eEm /mcvp,I50.5. Figure 8 shows the number of wav
breaking particles predicted by the fluid model~triangles!
alongside the number of trapped particles extracted from
PIC simulations~squares!, for various values ofh. Since
these plots show good agreement on the value ofh where
wave breaking and trapping begin, thethresholdfor trapping
is clearly identified. Ash increases~i.e., the density transi-
tion becomes more pronounced!, both the number of wave
breaking particles from the fluid analysis and the number
trapped particles from the PIC simulations increase initia
and then asymptote to some constant value. However,
number of trapped particles rises to only approximately o
half of the number of particles which participate in wa
breaking. This discrepancy illustrates an important clarifi
tion provided by the PIC simulations: the initial region
plasma which becomes trapped spansboth sides of the den-

FIG. 6. Superimposed plots of electric field and normalized m
mentum, for the parameter valuesh50.4,eEm /mcvp,I50.5, show
good agreement between the fluid model~solid curves! and the PIC
simulation~dots! at the onset of wave breaking.

FIG. 7. A phase space plot from a 1D PIC simulation 64 ps a
the beam has crossed the density transition with the parameter
ues h50.375 andeEm /mcvp,I50.5 illustrates the trapping o
background plasma particles~contained inside the box! by the
plasma wave.
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sity transition. By contrast, the fluid analysis predicts th
only particles on the downstream~lower density! side of the
interface participate in wave breaking. In the fluid analys
the asymptotic behavior in Fig. 8 arises from a cancell
effect between the increasing region of plasma involved
wave breaking and a decrease in the downstream densi
h is increased, while in the PIC trapping simulations it is d
to a falloff in the number of new upstream particles succe
fully injected into the plasma wave with each increase in
value ofh.

Thus the comparison of the fluid and PIC analyses cle
shows that while wave breaking is a necessary condition
trapping, the fluid analysis does not successfully pred
which particles are trapped after the wave-breaking condi
is satisfied. In hindsight this is not surprising because
fluid treatment loses its rigorous validity after wave brea
ing, and there is therefore no reason to expect that a pa
eter such as the trapped population would be calculated
rectly. Nevertheless, the Lagrangian fluid analysis
allowed a critical step forward in that we may predict exac
the threshold in parameter space where trapping begins

VI. CONDITIONS FOR APPLICABILITY OF THE
RESULTS

A note should be made regarding the assumptions of
preceding analysis and the restrictions which these assu
tions impose upon the physical system. In particular,
invocation of the one-dimensional limit and our treatment
the beam as ad function in z require that the transverse an
longitudinal dimensionss r and sz be large and small, re
spectively, compared to a plasma skin depth, or

kpsz!1, kps r@1. ~15!

The requirementkps r@1 arises from the need to avoid
large transverse electric field in the plasma, with its conco
tant transverse plasma electron motion. This criterion is
veloped straightforwardly with the bounds of validity of lin
ear theory. However, for cases of interest, linear theo

FIG. 8. These plots, at an electric field amplitude
eEm /mcvp,I50.5, illustrate the discrepancy between the numb
of wave-breaking particles from the fluid model~triangles! versus
trapped particles from the 1D PIC simulations~squares!, but show
good agreement in the value ofh where trapping begins and simila
asymptotic behaviors at largeh. The vertical axis is the number o
particles expressed as a fraction of the number of initial upstre
particles per plasma skin depth.
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which does not self-consistently take into account the effe
of the beam magnetic field on the plasma electron moti
may not serve as a guide. Recent work by Barov, Rose
weig, and Thompson@7# has in fact extended the results
linear theory in the case of a disk-shaped beam with
d-function distribution inz. In this analysis it was found that
even for beams of very large charge where the plasma
sponse is nonlinear, the longitudinal electric field imme
ately behind the beam isidentical to that predicted by linear
theory. In addition, the combination of plasma electron tra
verse motion due to the beam’s radial electric field and re
rection of the motion by the beam’s azimuthal magnetic fi
produces a strong longitudinal momentum kick forward. T
kick, similar to the ponderomotive kick forward due to a
ultrashort laser pulse, as in the LWFA case mentioned ab
is not uniform, but has a radial dependence that limits
effect to a region within a plasma skin depth of the beam
radial edge. Consequently, in the case of a beam of large
finite radius and zero length, the excitation experienced
plasma electrons lying along the path of the beam and w
within the beam’s radius consists primarily of a transie
backward impulse produced by the longitudinal electric fie
behind the beam.

However, Barov, Rosenzweig, and Thompson find that
predictions of the linear 2D analysis deviate from the resu
of 2D particle-in-cell simulations for a beam of finite leng
(kpsz51.1) as the beam charge is permitted to greatly
ceed the charge of plasma electrons in a cubic skin de
This indicates that the bounds of validity for a on
dimensional approximation in the case of a wide beam
small but nonzero length are additionally restricted by
upper limit on the beam density. A qualitative assessmen
the findings of Ref.@7# suggests that in order for the one
dimensional limit to apply under the conditions of Eq.~15!,
the beam density should not greatly exceed the ambient
sity of the plasma. However, a comprehensive understan
of the extent to which wave breaking of the sort describ
under the simplifying assumptions of our 1D model contr
utes to trapping in a fully nonlinear three-dimensional s
tem must await additional efforts in the form of highe
dimensional~2D and 3D! particle-in-cell simulations, and
extensions to the 2D theory. In this respect, the present
cussions are intended as a prelude to more extensive fu
work.

VII. CONCLUSIONS

We have, in the above analysis, employed a fully relat
istic Lagrangian fluid model to examine the phenomenon
wave breaking due to a density transition in a 1D plas
wave of relativistic phase velocity. This analysis has p
duced some exact results that have clarified the wa
breaking process, allowing us to identify which Lagrangi
fluid elements engage in wave breaking, where this w
breaking occurs, and most importantly, which combinatio
of plasma and wave parameters produce wave breaking.
present analysis stands in contrast to the Eulerian pic
previously developed in Ref.@1#. This contrasting view is
related to the shift of viewpoint from the Hamiltonian anal

s

m
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sis of electron motion in an approximate assumed poten
where one is concerned withtrapping, which must be distin-
guished from the concept ofwave breaking, or the break-
down of the fluid assumption.

As neither the Eulerian-Hamiltonian analysis of Ref.@1#,
nor the present Lagrangian model can answer in detail
question of how wave breaking and trapping are connec
one-dimensional particle-in-cell simulations were perform
to provide a basis for comparison. These numerical stu
indicate that the fluid model provides a good description o
1D plasma wave up to the point of wave breaking, and tha
correctly predicts the parameter values where trapping is
tiated. The PIC simulations indicate that the results of
fluid analysis cannot, however, be reliably extended past
onset of wave breaking. In particular, the magnitude of
.

ta
.
Y.
v.
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interval of initial fluid elements which participate in th
wave-breaking process is found to be a poor predictor of
number of trapped particles~Fig. 8!. The PIC simulations
also reveal that particles on the upstream side of the den
transition may become trapped in the plasma wave. A m
detailed study of the mechanism by which these partic
become trapped will be the subject of a future paper.
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